On Easton support iteration of Prikry type forcing notions

Moti Gitik and Eyal Kaplan

January 11, 2023

1 Introduction

Assume that κ is a measurable cardinal, $2^{\kappa} = \kappa^+$. Let $P = P_{\kappa}$ be an Easton support iteration of Prikry-type forcings, and let $G \subseteq P$ be generic over V. Assume that κ is measurable in V[G], and let $W \in V[G]$ be a normal measure on κ . Denote by $j_W \colon V[G] \to M[j_W(G)] \simeq \text{Ult}(V[G], W)$. What can be said about W, and $j_W \upharpoonright_V \colon V \to M$?

By a well known series of results in Inner Model theory, $j_W \upharpoonright_V$ is an iterated ultrapower of V, provided that the variety of large cardinals in the universe is limited. For instance, by Mitchell [27], assuming that there is no inner model with a cardinal α with $o(\alpha) = \alpha^{++}$ and $V = \mathcal{K}$ is the core model, $j_W \upharpoonright_{\mathcal{K}}$ is an iteration of \mathcal{K} by normal measures. By a result of Schindler [12], assuming that there is no inner model with a Wooding cardinal, $j_W \upharpoonright_{\mathcal{K}}$ is an iteration of \mathcal{K} by its extenders.

This question can be addressed in the following dual form: assume that $i: V \to N$ is an elementary embedding, definable in V, with $\operatorname{crit}(i) = \kappa$, and let $U = \{X \subseteq \kappa \colon \kappa \in i(X)\}$ be the normal measure on κ derived from i. Can U be extended to a normal measure $W \in V[G]$, such that (using the above notations) there exists an elementary embedding $k \colon N \to M$ for which $j_W \upharpoonright_{V} = k \circ i$?

2 The General Framework

Definition 2.1 An iteration $\langle P_{\alpha}, Q_{\beta} : \alpha \leq \kappa , \beta < \kappa \rangle$ is called an Easton support iteration of Prikry-type forcings if and only if, for every $\alpha \leq \kappa$ and $p \in P_{\alpha}$,

1. p is a function with domain α such that for every $\beta < \alpha$, $p \upharpoonright \beta \in P_{\beta}$, and $p \upharpoonright \beta \Vdash p(\beta) \in Q_{\beta}$.

2. If $\alpha \leq \kappa$ is inaccessible, then $supp(p) \cap \alpha$ is bounded in α ($supp(p) \subseteq \alpha$ is the set of indices γ on which $p(\gamma)$ is forced to be non-trivial).

Suppose that $p, q \in P_{\alpha}$. Then $p \geq q$, which means that p extends q, holds if and only if:

- 1. $supp(q) \subseteq supp(p)$.
- 2. For every $\beta \in supp(q)$, $p \upharpoonright \beta \Vdash p(\beta) \geq_{\beta} q(\beta)$ (where \geq_{β} is the order of Q_{β}).
- 3. There is a finite subset $b \subseteq supp(q)$, such that for every $\beta \in supp(q) \setminus b$, $p \upharpoonright \beta \Vdash p(\beta) \geq_{\beta}^* q(\beta)$ (where \geq_{β}^* is the direct extension order of Q_{β}).

If $b = \emptyset$, we say that p is a direct extension of q, and denote it by $p \ge q$.

The following properties are standard (see [8] for example):

Lemma 2.2 For every $\lambda \leq \kappa$, P_{λ} satisfies the Prikry property.

Lemma 2.3 For every $\lambda \leq \kappa$ which is Mahlo, P_{λ} has the $\lambda - c.c.$.

Let U be a normal ultrafilter over κ . Let $\langle P_{\alpha}, Q_{\beta} \mid \alpha \leq \kappa, \beta < \kappa \rangle$ be an Easton support iteration of a Prikry type forcing notions. Suppose that the following hold:

- 1. There exists an unbounded subset $\Delta \subseteq \kappa$, $\Delta \notin U$, such that, for every $\alpha < \kappa$,
 - (a) $\alpha \in \Delta \longrightarrow \Vdash_{P_{\alpha}} Q_{\alpha}$ is nontrivial.
 - (b) $\alpha \notin \Delta \longrightarrow \Vdash_{P_{\alpha}} Q_{\alpha}$ is trivial.
- 2. For every $\alpha < \kappa$, $\Vdash_{P_{\alpha}} \langle Q_{\alpha}, \leq_{\alpha}^* \rangle$ is α -closed.
- 3. For every $\alpha \in \Delta$, $\Vdash_{P_{\alpha}} |Q_{\alpha}| < \min(\Delta \setminus \alpha + 1)$.

Let G be a generic subset of $P = P_{\kappa}$. We would like to analyze the normal measures on κ in V[G] extending U. The standard way to do so appears in [8], we present it here for sake of completeness.

Lemma 2.4 There exists a normal measure $U^* \in V[G]$ on κ which extends U.

Proof. Let $\langle \underset{\alpha}{\mathcal{A}}_{\alpha} \colon \alpha < \kappa^{+} \rangle$ be an enumeration, in V, of $P = P_{\kappa}$ -names, such that every $X \in (\mathcal{P}(\kappa))^{V[G]}$ has the form $(\underset{\alpha}{\mathcal{A}}_{\alpha})_{G}$ for some $\alpha < \kappa^{+}$. Such list of names exists since $P = P_{\kappa}$ is $\kappa - c.c.$. Now, construct, in V[G], a \leq^* -increasing sequence of conditions $\langle q_{\alpha} \colon \alpha < \kappa^{+} \rangle$,

such that, over N[G], $q_{\alpha} \parallel \kappa \in j_U(\underset{\sim}{\mathcal{A}_{\alpha}})$. Such a sequence exists since $V[G] \models "\langle j_U(P) \setminus \kappa, \leq^* \rangle$ is κ^+ – closed."

Let $\langle \underline{q}_{\alpha} \colon \alpha < \kappa^{+} \rangle$ be a P-name for the above sequence. Now, define $U^{*} \supseteq U$ as follows: For every $\alpha < \kappa^{+}$, $(\underline{\mathcal{A}}_{\alpha})_{G} \in U^{*}$ if and only if there exists $p \in G$ and $\alpha < \kappa^{+}$ such that—

$$p \widehat{} q_{\alpha} \vDash \kappa \in i(A_{\alpha})$$

We argue that U^* defined above is a normal measure which extends U.

Assume that $\delta < \kappa$ and $\langle X_{\alpha} : \alpha < \delta \rangle$ is a P_{κ} -name for a partition of κ in V[G]. For every $\alpha < \delta$, define—

$$Y_{\alpha} = \{ \beta < \kappa^+ \colon \exists p \in P_{\kappa}, \ p \Vdash X_{\alpha} = A_{\beta} \}$$

Since P is $\kappa - c.c.$, $|Y_{\alpha}| < \kappa$. Denote—

$$Y = \bigcup_{\alpha < \delta} Y_{\alpha}$$

Then $Y \subseteq \kappa^+$ is a bounded subset. Pick $\alpha^* < \kappa^+$ high enough which bounds Y. Let us argue that there exists $p \in G$ and a unique $\beta < \delta$ such that—

$$p \stackrel{\frown}{\sim} q_{\alpha^*} \Vdash \kappa \in j_U(A_\beta)$$

and thus $(A_{\beta})_G \in U^*$.

Work in N[G]. Note that $\langle A_{\beta} \colon \beta \in Y \rangle$ covers the sequence $\langle X_{\alpha} \colon \alpha < \delta \rangle$. Since q_{α^*} is \leq^* above any q_{β} for $\beta \in Y$,

$$\forall \xi < \alpha, q_{\alpha^*} \parallel \kappa \in i(X_{\xi})$$

Since $\langle i(X_{\xi}) : \xi < \delta \rangle$ is a partition of $i(\kappa)$, there exists a unique $\xi^* < \delta$ such that $q_{\alpha^*} \Vdash \kappa \in i(X_{\xi^*})$. Let $p \in G$ be a condition forcing this. Then $p \cap q_{\alpha^*} \Vdash \kappa \in i(X_{\xi^*})$, as desired.

A similar argument shows that U^* is normal. Indeed, given a P_{κ} -name for a regressive function $f: \kappa \to \kappa$, define, for every $\alpha < \kappa$,

$$X_{\alpha} = \{ \xi < \kappa \colon f(\xi) = \alpha \}$$

and proceed as before to find a unique $\alpha < \kappa$ such that $X_{\alpha} \in U^*$. \square

In particular, U can be extended to a normal measure $U^* \in V[G]$, such that the ultrapower embedding $j_{U^*} : V[G] \to M[j_{U^*}(G)]$ satisfies that $j_{U^*} \upharpoonright_V = k \circ j_U$, for an embedding $k : M_U \to M$ which satisfies $\operatorname{crit}(k) > \kappa$. Indeed, define $k([f]_U) = [f]_{U^*}$ for every $f : \kappa \to V$ in V. An immediate question is whether this can be generalized further. Given an elementary embedding $i: V \to N$ with critical point κ , definable in V, can $U = \{X \subseteq \kappa : \kappa \in i(X)\}$ be extended to a normal measure $W \in V[G]$ such that $j_W \upharpoonright_V = k \circ i$, for some $k: N \to M$ with $\operatorname{crit}(k) > \kappa$?

The first step is to use the embedding $i: V \to N$ to extend U.

Lemma 2.5 Assume that $i: V \to N$ is an elementary embedding definable in V, with $crit(i) = \kappa$, such that $|i(\kappa)| = \kappa^+$, $\kappa \notin i(\Delta)$, $N \subseteq V$ and $V \cap {}^{\kappa}N \subseteq N$. Denote-

$$U = \{ X \subseteq \kappa \colon \kappa \in i(X) \}$$

Then G is $i(P) \upharpoonright_{\kappa} = P$ -generic over N, and:

- 1. For every $q \in i(P) \setminus \kappa$, there is $H \in V[G]$ with $q \in H$, which is $\langle i(P) \setminus \kappa, \leq^* \rangle$ -generic over N[G].
- 2. Given such $H \in V[G]$, define-

$$U_H = \{(\underbrace{A})_G : \underbrace{A} \text{ is a } P - name \text{ for a subset of } \kappa, \text{ and there exists}$$

$$p \in G * H \text{ such that } p \Vdash \kappa \in i(\underbrace{A})\}$$

Then U_H is a normal, κ -complete ultrafilter on κ which extends U.

Proof.

- 1. We can enumerate, in V[G], all the maximal antichains in $\langle i(P) \setminus \kappa, \leq^* \rangle$ with order type κ^+ , by $i(\kappa)$ -c.c. of the forcing, and since $V[G] \vDash |i(\kappa)| = \kappa^+$. Note that $\kappa \not\in i(\Delta)$, so in the sense of N[G], the forcing $\langle i(P) \setminus \kappa, \leq^* \rangle$ is more than κ -closed. Moreover, since $V \vDash {}^{\kappa}N \subseteq N$, and $P = P_{\kappa}$ is κ -c.c., $V[G] \vDash {}^{\kappa}N[G] \subseteq N[G]$. Therefore, every sequence of length κ of conditions in $i(P) \setminus \kappa$ which belongs to V[G] belongs to N[G] as well. Thus, in the sense of V[G], the forcing $\langle i(P) \setminus \kappa, \leq^* \rangle$ is κ^+ -closed.
 - Starting from any condition in $i(P) \setminus \kappa$, we can construct (in V[G]) a sequence of direct extensions of it, meeting every maximal antichain. This sequence generates a \leq^* -generic over N[G] for $i(P) \setminus \kappa$, which belongs to V[G].
- 2. First, we prove that $W = U_H$ is a normal, κ -complete ultrafilter on κ which extends U. It is not hard to verify that W is a filter. We prove that W is a κ -complete ultrafilter. Assume that $\langle X_{\alpha} : \alpha < \delta \rangle$ is a partition of κ , for some $\delta < \kappa$. Work in N[G]. Let

 $D \subseteq i(P) \setminus \kappa$ be the \leq^* -dense open set of conditions which decide the unique $\alpha < \delta$ for which $\kappa \in i(X_{\alpha})$. Then such a statement is forced by some $r \in H$. Let $p \in G$ be a condition which forces that r has this property, and also decides the value of α . Then $p \cap r \Vdash \kappa \in i(X_{\alpha})$ and thus $X_{\alpha} \in W$. Normality of W follows by a similar argument, using the dense set of conditions deciding the value of $i(f)(\kappa)$ for a given regressive function $f : \kappa \to \kappa$. The argument works since we don't force over κ in N.

In general, the settings of lemma 2.5 are not enough ensure that $j_{U_H} \upharpoonright_V = k \circ i$ for some k with $\operatorname{crit}(k) > \kappa$. For instance, given a normal measure U on κ in V with $\Delta \notin U$, the embedding $i = j_{U^2}$ satisfies the settings of lemma 2.5, but cannot be used to extend U to a measure U_H for which $j_{U_H} = k \circ i$ for some embedding k with $\operatorname{crit}(k) > \kappa$. This follows since i fails to satisfy clause 3 in the next claim:

Claim 1 Assume that $U \in V$ is a normal measure on κ , $W \in V[G]$ is a normal measure which extends $U, i: V \to N$ is an elementary embedding and $j_W \upharpoonright_V = k \circ i$ for some $k: N \to M$ with $\operatorname{crit}(k) > \kappa$. Then—

- 1. $\{X \subseteq \kappa \colon \kappa \in i(X)\} = U$.
- 2. $|i(\kappa)| = \kappa^{+}$.
- 3. $\{i(f)(\kappa): f \in V, f: \kappa \to \kappa\}$ is unbounded in $i(\kappa)$.

Proof.

- 1. $\{X \subseteq \kappa \colon \kappa \in i(X)\} = U$: Indeed, let $X \subseteq \kappa$ in V with $\kappa \in i(X)$. By applying $k \colon N \to M$ it follows that $\kappa \in j_W(X)$ and hence $X \in W$. Since $X \in V$ and $U = W \cap V$, it follows that $X \in U$.
- 2. $|i(\kappa)| = \kappa^+$: This holds since, in V[G], $|j_W(\kappa)| = 2^{\kappa} = \kappa^+$ (since, in V, $2^{\kappa} = \kappa^+$), and $i(\kappa) \leq j_W(\kappa)$.
- 3. $\{i(f)(\kappa)|f:\kappa\to\kappa\}$ is unbounded in $i(\kappa)$: Given $\beta< i(\kappa)$, let $f\in V[G]$ be a function such that $[f]_W=k(\beta)$. Since $k(\beta)< k(i(\kappa))=j_W(\kappa)$, we can assume that $f:\kappa\to\kappa$. The Easton support ensures that there exists $g:\kappa\to\kappa$ in V which dominates f. Thus $i(g)(\kappa)\geq\beta$ (indeed, by applying $k\colon N\to M$ on both sides, this is equivalent to $j_W(g)(\kappa)\geq k(\beta)=[f]_W$, which holds, since g dominates f. Note that, when applying k, we used the fact that $\mathrm{crit}(k)>\kappa$).

Remark 2.6 M. Magidor gave the following remark, that allows to reduce the assumptions imposed on i above: Assuming that $N \subseteq V$ and $i: V \to N$ is definable in V[G], it follows that N is a class of V. Indeed, pick a formula φ and a parameter $a \in V[G]$ such that for every x, y in V, $\varphi(x, y, a)$ holds in V[G] if and only if i(x) = y. For every ordinal α pick a condition $p_{\alpha} \in G$ which decides the value of the set $\left(V_{i(\alpha)}\right)^N$, which is the set y for which $\varphi(V_{\alpha}, y, a)$ holds. Since P is a set forcing, there exists $p^* \in G$ such that, for unboundedly many ordinals α , $p_{\alpha} = p^*$. Then N can be defined as a class of V using p^* , $N = \bigcup \{y: \exists \alpha \in ON, p^* \Vdash \varphi(V_{\alpha}, y, a)\}$.

Theorem 2.7 Assume that $\Delta \subseteq \kappa$ is unbounded, $U \in V$ is a normal measure on κ with $\Delta \notin U$, and $i: V \to N$ is an elementary embedding, definable in V, such that the properties of lemma 2.5 and claim 1 hold, namely:

```
1. crit(i) = \kappa.
```

2.
$$V \cap {}^{\kappa}N \subset N$$
.

3.
$$\kappa \notin i(\Delta)$$
.

4.
$$U = \{X \subseteq \kappa : \kappa \in i(X)\}.$$

5.
$$|i(\kappa)| = \kappa^+$$
.

6.
$$\{i(f)(\kappa): f \in V, f: \kappa \to \kappa\}$$
 is unbounded in $i(\kappa)$.

Assume also that every element of N has the form $i(f)(\beta_1, \ldots, \beta_l)$ for some $f \in V$ and $\beta_1 < \ldots < \beta_l < i(\kappa)$. Then there exists a measure $W \in V[G]$ extending U, such that, denoting $Ult(V[G], W) \simeq M_W[j_W(G)]$, there exists $k \colon N \to M_W$ with $crit(k) > \kappa$ such that $j_W \upharpoonright_V = k \circ i$.

Theorem 2.7 will be proved by a sequence of lemmata, concluded in lemma 2.15. The main idea in the proof of theorem 2.7 is to add representing functions for all the generators of i above κ . This is needed since $j_W \upharpoonright_V$ has a single generator κ .

Definition 2.8 An ordinal β is called a generator of $i: V \to N$ if there are no $n < \omega$, ordinals β_1, \ldots, β_n below β and a function $f \in V$ such that $\beta = i(f)(\beta_1, \ldots, \beta_n)$.

In the next lemma we construct a function $\alpha \mapsto \theta_{\alpha}$ in V[G], which will be utilized, alongside functions in V, to represent the generators of i in Ult (V[G], W).

Lemma 2.9 There exists a P_{κ} -name for a sequence of ordinals, $\langle \theta_{\alpha} : \alpha \in \Delta \rangle$, such that, for every $\beta < \kappa$ and $p \in P_{\kappa}$, there is $\alpha_0 < \kappa$ such that for every $\alpha \geq \alpha_0$ there exists $p^* \geq^* p$ such that $p^* \Vdash \theta_{\alpha} = \beta$.

Remark 2.10 There are natural candidates for the ordinals $\langle \theta_{\alpha} : \alpha \in \Delta \rangle$ in most of the common examples. For instance, if $P = P_{\kappa}$ is an iteration of Prikry forcings, we can take θ_{α} = the first element in the Prikry sequence added to α ; If P_{κ} is an iteration of Cohen forcings, take θ_{α} to be the least element in the Cohen subset added to α .

Proof. Fix a cardinal $\alpha < \kappa$. Let $\tau_{\alpha} < \kappa$ be the least ordinal such that $P \upharpoonright_{(\alpha,\tau_{\alpha})}$ is not $\alpha - c.c.$. We will argue below that such $\tau_{\alpha} < \kappa$ exists, but first, let us show that this suffices: Pick an unbounded subset $X \subseteq \alpha$, such that, for every $\alpha, \alpha' \in X$,

$$\alpha < \alpha' \implies \tau_{\alpha} < \tau_{\alpha'}$$

(for instance, let X be the club of closure points of the function $\alpha \mapsto \tau_{\alpha}$). Enumerate $X = \langle x_{\alpha} : \alpha \in \Delta \rangle$. For every $\alpha \in \Delta$, let $\langle q_{x_{\alpha},\xi} : \xi < x_{\alpha} \rangle$ be an antichain in $P_{(x_{\alpha},\tau_{x_{\alpha}})}$ of cardinality α . Define θ_{α} to be the unique ordinal $\xi < \kappa$ for which $p_{x_{\alpha},\xi} \in G \upharpoonright_{(x_{\alpha},\tau_{x_{\alpha}})}$ (if there is no such ξ , which is possible since the antichain is not necessarily maximal, set $\theta_{\alpha} = 0$).

Now, given $\beta < \kappa$ and a condition $p \in P_{\kappa}$, pick first $\alpha \in \Delta$ for which x_{α} bounds the support of p. Direct extend p to p^* such that $p^* \upharpoonright_{(x_{\alpha},\tau_{x_{\alpha}})} = q_{x_{\alpha},\beta}$. Then by our definition, p^* forces that $\theta_{\alpha} = \beta$.

Let us argue now that indeed, for every $\alpha < \kappa$ there exists $\tau_{\alpha} < \kappa$ such that $P \upharpoonright_{(\alpha,\tau_{\alpha})}$ is not $\alpha - c.c.$: Pick τ_{α} such that there are α -many elements of Δ in the interval (α,τ_{α}) . Let $\langle \tau_{\alpha,\xi} \colon \xi < \alpha \rangle$ be an enumeration of the first α -many elements in $(\alpha,\tau_{\alpha}) \cap \Delta$. For every $\xi < \alpha$, let χ_{ξ}, χ_{ξ} be $P_{\tau_{\alpha,\xi}}$ -names, forced by $0_{P_{\tau_{\alpha,\xi}}}$ to be pair of incompatible elements of $Q_{\tau_{\alpha,\xi}}$. Such a pair exists since $Q_{\tau_{\alpha,\xi}}$ is nontrivial.

Now, for every $\sigma \in 2^{<\alpha}$, let $p_{\sigma} \in P \upharpoonright_{(\alpha,\tau_{\alpha})}$ be the condition which satisfies, for every $\xi < \alpha$, that—

$$p_{\sigma} \upharpoonright_{\xi} \Vdash p_{\sigma}(\xi) = \begin{cases} \underset{\xi}{x_{\xi}} & \text{If } \sigma(\xi) = 0\\ \underset{\xi}{y_{\xi}} & \text{If } \sigma(\xi) = 1 \end{cases}$$

Note that τ_{α} is the limit of the first α many elements above α in Δ , and thus τ_{α} is singular, so the support of a condition in $P = P_{\kappa}$ may be unbounded in τ_{α} .

Then $\langle p_{\sigma} : \sigma \in 2^{<\alpha} \rangle$ is an antichain in $P \upharpoonright_{(\alpha,\tau_{\alpha})}$ of cardinality at least α . \square

Remark 2.11 Given a function $\alpha \mapsto \underset{\sim}{\theta}_{\alpha}$ as in lemma 2.9, we slightly abuse the notation and denote $i(\alpha \mapsto \underset{\sim}{\theta}_{\alpha})$ by $(\underset{\sim}{\theta}_{\alpha} : \alpha < i(\kappa))$.

Lemma 2.12 Under the assumptions of theorem 2.7, there exists $H \in V[G]$ which is $\langle i(P) \setminus \kappa, \leq^* \rangle$ -generic over N[G], with the following property:

(*) For every generator $\beta \in i(\kappa) \setminus (\kappa + 1)$ of i, there exists a function $f = f_{\beta} \in V$, $f : \kappa \to \kappa$ and a condition $q \in H$ such that $q \Vdash \beta = i \left(\alpha \mapsto \mathfrak{G}_{f(\alpha)}\right)(\kappa)$.

where $\langle \theta_{\alpha} : \alpha < i(\kappa) \rangle$ is as in remark 2.11.

Proof. In V[G], let $\langle A_{\xi} \mid \xi < \kappa^{+} \rangle$ be an enumeration of maximal antichains in i(P). Let $\langle \beta_{\xi} \mid \xi < \kappa^{+} \rangle$ be an enumeration of all the generators of i below $i(\kappa)$. Define in V[G] a \leq^* -increasing sequence $\langle r_{\xi} \mid \xi < \kappa^{+} \rangle$. Assume that $\langle r_{\xi} \colon \xi < \xi^* \rangle$ has been constructed for some $\xi^* < \kappa^{+}$. Pick a condition r which \leq^* extends all the conditions $\langle r_{\xi} \colon \xi < \xi^* \rangle$ constructed so far, and, by extending it, assume that r extends a condition in A_{ξ^*} . Finally, let $\alpha_0 < i(\kappa)$ be such that for every $\alpha \geq \alpha_0$ there exists $r^* \geq^* r$ which forces that $i(\xi \mapsto \theta_{\xi})(\alpha) = \beta_{\xi^*}$. Pick any $\alpha \geq \alpha_0$ below $i(\kappa)$ which has the form $i(f)(\kappa)$ for some $f = f_{\beta_{\xi^*}} \in V$, and let $r_{\xi^*} \geq^* r$ be a condition which forces that $i(\xi \mapsto \theta_{\xi})(\alpha) = \beta_{\xi^*}$.

Finally, let H be the \leq^* -generic generated from $\langle r_{\xi} : \xi < \xi^* \rangle$. \square

Remark 2.13 Repeating the above argument, we can construct 2^{κ^+} -many distinct generic sets H satisfying property (*), by constructing a binary tree $\langle r_{\sigma} : \sigma \in 2^{<\kappa^+} \rangle$ of conditions, which are \leq^* -increasing in each branch, and for each $\sigma \in 2^{<\kappa^+}$, $r_{\sigma^{\frown}\langle 0 \rangle}$ and $r_{\sigma^{\frown}\langle 1 \rangle}$ are \leq^* -incompatible. Assuming $2^{\kappa^+} = \kappa^{++}$, this provides the maximal number of generic sets H in V[G] for $\langle i(P) \setminus \kappa, \leq^* \rangle$ over N[G].

Below we will define for every such H a measure $U_H \in V[G]$ on κ which extends U; under mild assumptions on the forcing notions Q_{α} , we will prove that for $H \neq H'$ satisfying property (*), $U_H \neq U_{H'}$ (see theorem 2.18). Assuming GCH, this produces the maximal number κ^{++} of normal measures on κ , generalizing the well known result of Kunen and Paris [25].

Remark 2.14 Not every generic set $H \in V[G]$ for $\langle i(P) \setminus \kappa, \leq^* \rangle$ satisfies property (*).

Indeed, assume that $i: V \to N$ has at least one generator in the interval $(\kappa, i(\kappa))$. Let $\sigma: M_U \to N$ be the embedding which maps each element $[f]_U$ of M_U to $i(f)(\kappa)$ (here $f \in V$ is any function with domain κ). σ has critical point strictly above κ^+ , since $(\kappa^+)^N = \kappa^+$.

In V[G], let $H_U \subseteq j_U(P) \setminus \kappa$ be \leq^* -generic over $M_U[G]$. Let $H \subseteq i(P) \setminus \kappa$ be the generic set generated from $\sigma''H_U$. We argue that H is indeed \leq^* -generic over N. Let $D \in N$ be a \leq^* -dense open subset of $i(P) \setminus \kappa$. Write $D = i(F)(\kappa, \beta_1, \ldots, \beta_l)$ for some function $F \in V$, $l < \omega$ and generators $\beta_1, \ldots, \beta_l < i(\kappa)$ of i. We can assume that for every $\xi, \eta_1, \ldots, \eta_l$, $F(\xi, \eta_1, \ldots, \eta_l) \subseteq P \setminus \xi$ is forced to be \leq^* -dense open subset of $P \setminus \xi$. Define, in M_U ,

$$D_{U} = \bigcap_{\gamma_{1}, \dots, \gamma_{l} < j_{U}(\kappa)} j_{U}(F) (\kappa, \gamma_{1}, \dots, \gamma_{l})$$

and note that, since the amount of generators $\gamma_1, \ldots, \gamma_l < j_U(\kappa)$ in M_U is κ^+ , and $\langle j_U(P) \setminus \kappa, \leq^* \rangle$ is more than κ^+ -closed, D_U is \leq^* -dense open subset of $j_U(P) \setminus \kappa$. Pick any $q \in H_U \cap D_U$. Then $\sigma(q) \in D \cap H$, since $\sigma(D_U) \subseteq D$.

Since $\sigma''G * H_U \subseteq G * H$, the embedding $\sigma \colon M_U \to N$ can be lifted to an embedding $\sigma^* \colon M_U [G * H_U] \to N [G * H]$.

Pick now any generator β of i in the interval $(\kappa, i(\kappa))$. We argue that there is no $f \in V$ such that $H \Vdash \beta = i \left(\alpha \mapsto \underset{\sim}{\theta}_{f(\alpha)}\right)(\kappa)$. Indeed, otherwise, by elementarity of σ^* , there exists $\beta^* < j_U(\kappa)$ such that—

$$H_U \Vdash \beta^* = j_U \left(\alpha \mapsto \varrho_{f(\alpha)} \right) (\kappa)$$

Let $g \in V$ be a function such that $\beta^* = j_U(g)(\kappa)$. Then-

$$\beta = \sigma^* \left(\beta^* \right) = i \left(g \right) \left(\kappa \right)$$

contradicting the fact that β is a generator of i.

Given i, N, U as in theorem 2.7 and a generic set $H \in V[G]$ for $\langle i(P) \setminus \kappa, \leq^* \rangle$ over N[G], define—

$$U_H = \{(A)_G : A \text{ is a } P - \text{name for a subset of } \kappa, \text{ and there exists}$$

 $p \in G * H \text{ such that } p \Vdash \kappa \in i(A)\}$

Then U_H is a normal, κ -complete ultrafilter which extends U. This follows by repeating the argument of lemma 2.5.

The model $M_{U_H} \simeq \text{Ult}(V[G], U_H)$ is of the form $M[G^*]$, where M is the image of V and $G^* = j_{U_H}(G)$ is $j_{U_H}(P)$ —generic over M in sense of M_{U_H} . We conclude the proof of theorem 2.7 by defining an elementary embedding $k \colon N \to M$ and proving that $\text{crit}(k) > \kappa$.

In the next lemma we continue the abuse of notation as in remark 2.11, and denote—

$$j_{U_H}(\langle \theta_{\xi} \colon \xi \in \Delta \rangle) = \langle \theta_{\xi} \colon \xi \in j_{U_H}(\Delta) \rangle$$

Lemma 2.15 Assume the settings of theorem 2.7. Suppose that H is a generic set for $\langle i(P) \setminus \kappa, \leq^* \rangle$ over N[G] with the property (*). Define then $k: N \to M$ as follows:

$$k\left(i(f)(\kappa,\beta_{1},...,\beta_{l})\right) = j_{U_{H}}(f)\left(\kappa,\theta_{\left[f_{\beta_{1}}\right]_{U_{H}}},...,\theta_{\left[f_{\beta_{l}}\right]_{U_{H}}}\right)$$

For every $l < \omega$, $\beta_1, \ldots, \beta_l < i(\kappa)$ generators of i and $f \in V$ (the functions f_{β_i} , $1 \le i \le l$, are as in lemma 2.12).

Then $k: N \to M$ is elementary, $crit(k) > \kappa$ and $j_{U_H} \upharpoonright_V = k \circ i$.

Proof. Denote $W = U_H$. Let us prove that the embedding k defined above is elementary. Assume that $x, y \in N$. There are functions f, g in V, generators $\beta_1 < \ldots < \beta_l < i(\kappa)$ such that—

$$x = i(f)(\kappa, \beta_1, \dots, \beta_l), y = i(g)(\kappa, \beta_1, \dots, \beta_l)$$

Assume now that k(x) = k(y), namely-

$$j_{W}(f)\left(\kappa,\theta_{j_{W}(f_{\beta_{1}})(\kappa)},\ldots,\theta_{j_{W}(f_{\beta_{l}})(\kappa)}\right) \in j_{W}(g)\left(\kappa,\theta_{j_{W}(f_{\beta_{1}})(\kappa)},\ldots,\theta_{j_{W}(f_{\beta_{l}})(\kappa)}\right)$$

Then-

$$\{\xi < \kappa \colon f\left(\xi, \theta_{f_{\beta_1}(\xi)}, \dots, \theta_{f_{\beta_l}(\xi)}\right) \in g\left(\xi, \theta_{f_{\beta_1}(\xi)}, \dots, \theta_{f_{\beta_l}(\xi)}\right)\} \in W$$

and by the definition of W, there exists $p \in G$ and $r \in H$ such that

$$p^{\widehat{}}r \Vdash \kappa \in i\Big(\{\xi < \kappa \colon f\left(\xi, \underbrace{\theta}_{f_{\beta_1}(\xi)}, \dots, \underbrace{\theta}_{f_{\beta_l}(\xi)}\right) \in g\left(\xi, \underbrace{\theta}_{f_{\beta_1}(\xi)}, \dots, \underbrace{\theta}_{f_{\beta_l}(\xi)}\right)\}\Big)$$

By extending $r \in H$ finitely many times, $p \cap r \Vdash \underset{(i(f_{\beta_m})(\kappa))}{\mathcal{H}} = \beta_m$ holds for every $1 \leq m \leq k$. Thus, the last equation can be replaced with—

$$p \cap r \Vdash i(f) (\kappa, \beta_1, \dots, \beta_l) \in i(g) (\kappa, \beta_1, \dots, \beta_l)$$

but the forced statement above is entirely in N, and since a condition forces it, it is true in N. Thus—

$$i(f)(\kappa, \beta_1, \dots, \beta_l) \in i(g)(\kappa, \beta_1, \dots, \beta_l)$$

as desired. The implication in the other direction is proved similarly.

Clearly $\operatorname{crit}(k) > \kappa$. We finish the proof by showing that $j_W \upharpoonright_V = k \circ i$. Let $x \in V$ and let $c_x \colon \kappa \to V$ be the constant function with value x. Then—

$$k(i(x)) = k(i(c_x)(\kappa)) = j_W(c_x)(\kappa) = j_W(x)$$

as desired. \square

Let us now study the properties of the embedding $k \colon N \to M$. We assume the settings of theorem 2.7.

Lemma 2.16 If $\leq = \leq^*$, then k is the identity and M = N.

Proof. Fix an ordinal η , and let $f \in V[G]$ be a function such that $\eta = [f]_W$. We will prove that $\eta \in \text{Im}(k)$. Indeed, consider the set–

$$\{p \in i(P)/G \mid \exists \tau(p \Vdash i(f)(\kappa) = \tau)\}$$

It is \leq -dense in N[G]. So, if $\leq = \leq^*$, then H meets it. Thus, there exists a condition $q \in H$, a function $g \in V$ and generators β_1, \ldots, β_l of i, such that $q \Vdash i(f)(\kappa) = i(g)(\kappa, \beta_1, \ldots, \beta_l)$. Thus, by the definition of W,

$$\{\xi < \kappa \colon f(\xi) = g\left(\xi, \theta_{f_{\beta_1}(\xi)}, \dots, \theta_{f_{\beta_l}(\xi)}\right)\} \in W$$

and thus $\eta = [f]_W = k (i(g) (\kappa, \beta_1, \dots, \beta_l)).$

In general, M should not be equal to N. Thus, for example, they will differ if the Prikry forcing was used unboundedly often below κ .

Lemma 2.17 $k''H \subseteq G^* \setminus \kappa$.

Proof. Let q be in H, and let $p \in G$ be a condition such that $p \Vdash q \in H$ (recall that $H \in V[G]$). Clearly,

$$p \cap q \Vdash q \in \Gamma \setminus \kappa$$

where Γ is the canonical i(P)-name for the generic set for i(P) over V.

Pick $f: [\kappa]^n \to \kappa, f \in V$ and $\beta_1 < ... < \beta_n < i(\kappa)$ such that $q = i(f)(\beta_1, ..., \beta_n)$. For every $m, 1 \le m \le n$, there are $f_m: \kappa \to \kappa, f_m \in V$ such that $q_{i(f_m)(\kappa),\beta_m} \in H$, namely, $\beta_m = \theta_{i(f_m)(\kappa)}$.

Let us argue that the set-

$$A_q = \{ \nu < \kappa \mid f(\theta_{f_1(\nu)}, ..., \theta_{f_n(\nu)}) \in G \setminus \nu \}$$

is in W. Pick any $q \leq^* q^* \in H$ which \leq^* which forces that $\beta_m = \theta_{i(f_{\beta_m})(\kappa)}$, for every $1 \leq m \leq n$. Recall that—

$$q = i(f)(\beta_1, ..., \beta_n) = i(f)(\theta_{i(f_1)(\kappa)}, ..., \theta_{i(f_n)(\kappa)})$$

and thus $p \stackrel{\frown}{\sim} q^* \Vdash \kappa \in i(A_q)$.

The next lemma generalizes a Kunen-Paris result (see remark 2.13).

Theorem 2.18 Let $H, H' \in V[G]$ be generic sets for $\langle i(P) \setminus \kappa, \leq^* \rangle$ over N[G]. Suppose that H and H' satisfy (*). Assume that for every $\beta < \kappa$, if $q, q' \in Q_\beta$ are incompatible according to the order \leq^* , then-

$$D_{\beta}(q) = \{r \in Q_{\beta} \mid r \text{ is } \leq -incompatible with } q\}$$

 $is \leq^* -dense \ above \ q', \ or$

$$D_{\beta}(q') = \{r \in Q_{\beta} \mid r \text{ is } \leq -incompatible with } q'\}$$

 $is \leq^* -dense \ above \ q.^1$

Suppose that $H \neq H'$, then $U_H \neq U_{H'}$.

Remark 2.19 Note that if the Q_{β} -s are taken to be Prikry forcings, then the above property holds. Indeed, assume that $q = \langle t, A \rangle$ and $q' = \langle t', A' \rangle$ are \leq^* -incompatible. Then $t \neq t'$. Assume without loss of generality that t is an end extension of t'. Then $D(q) = \{r : r, q \text{ are } \leq^*$ -incompatible} is \leq^* -dense open above q'. Indeed, pick a condition $\langle t', B \rangle \geq^* \langle t', A \rangle$. Shrink B to the set $B^* = B \setminus (\max(t) + 1)$. Then $\langle t', B^* \rangle \geq^* \langle t', B \rangle$ and is incompatible with $q = \langle t, A \rangle$.

Proof. Suppose otherwise, i.e. $H \neq H'$, but $U_H = U_{H'} := W$.

Let $k: N \to M$ be the elementary embedding defined from H and $k': N \to M$ from H'.

¹This type of condition usually holds. For example, if we iterate Prikry forcings, then just shrinking sets of measure one will produce such type of incomparability.

Claim 2 $k \neq k'$.

Proof. Assume for contradiction that k = k'. Thus, by Lemma 2.17, every pair of elements from H, H' are \leq -compatible. We will argue that this implies that H = H'. It suffices to prove that every pair of conditions $q \in H, q' \in H'$ are \leq *-compatible.

Assume otherwise. Let $\alpha < \kappa$ be the least ordinal such that there are pair of conditions $q \in H, q' \in H'$ for which $q \upharpoonright_{\alpha}, q' \upharpoonright_{\alpha}$ are \leq^* -incompatible. α cannot be limit, since \leq^* -compatibility of all the initial segments of q, q' below α implies that $q \upharpoonright_{\alpha}$ and $q' \upharpoonright_{\alpha}$ are \leq^* -compatible themselves (if α is inaccessible, this is clear since the support of q, q' is bounded in α ; if the supports of q, q' are unbounded in α , just intersect sets of measure one to find a common direct extension). Thus $\alpha = \beta + 1$ is successor, and $q(\beta), q'(\beta)$ are \leq^* -incompatible. By the property of the forcing Q_{β} , without loss of generality, $D_{\beta}(q)$ is \leq^* -dense open above q'. Since $q' \in H'(\beta), q'$ can be extended to a condition $r \in H'$, such that $r(\beta) \in D_{\beta}(q)$. In particular, $q \in H$, $r \in H'$ are \leq -incompatible, which is a contradiction. \square of the claim.

Since $k \neq k'$, there exists a generator β of i such that $k(\beta) \neq k'(\beta)$. Pick the least such generator β .

Claim 3 For every generator $\beta' < \beta$ of i, there exists a function $f_{\beta'} \in V$ such that each generic H, H' has a condition which forces that $\beta' = i(f_{\beta'})(\kappa)$.

Proof. This essentially follows from the minimality of β .

Indeed, let $f_{\beta'}$ and $f'_{\beta'}$ be the distinct functions produced from property (*) of H, H' with respect to the generator β' . Assume for contradiction that one of the generics, say H, has a condition which forces that $\theta_{i(f_{\beta'})(\kappa)} \neq \theta_{i(f'_{\beta'})(\kappa)}$. By applying k, in $M[j_W(G)]$,

$$\theta_{\left[f_{\beta'}\right]_{W}} \neq \theta_{\left[f'_{\beta'}\right]_{W}}$$

namely-

$$k(\beta') \neq k'(\beta')$$

contradicting the minimality of β . \square of claim.

Recall now that $k(\beta) \neq k'(\beta)$. Thus, there are two distinct functions f, f' in V such that—

- 1. Some condition in H forces that $\beta = \bigoplus_{i(f)(\kappa)}$.
- 2. Some condition in H' forces that $\beta = \theta_{i(f')(\kappa)}$.

3. Without loss of generality, $\{\xi < \kappa : \theta_{f'(\xi)} < \theta_{f(\xi)}\} \in W$.

There exists an ordinal β' such that some condition in H forces that $\underset{i(f')(\kappa)}{\underline{\theta}} = \beta'$. (Remark: This should be proved). By the third property above, $\beta' < \beta$.

We argue that β' is a generator of i as well. This will finish the proof: once we prove that β' is a generator of i, it follows from claim 3 that $\theta_{i(f')(\kappa)}$ represents β' in the sense of both generics, H, H'. However, in the sense of H', it represents β , which is a contradiction.

Assume for contradiction that β' is not a generator of i. Then there is a function $g \in V$ and β_1, \ldots, β_l below β' , such that $\beta' = i(h)(\kappa, \beta_1, \ldots, \beta_l)$. Since H forces that $\beta' = \underbrace{\theta_{i(f')(\kappa)}}$, it follows that—

$$\{\xi < \kappa \colon g\left(\xi, \theta_{f_{\beta_1}(\xi)}, \dots, \theta_{f_{\beta_l}(\xi)}\right) = \theta_{f'(\xi)}\} \in U_H = W$$

Thus the same set belongs to $U_{H'}$. Therefore, H' forces that—

$$\beta = \theta_{i(f')(\kappa)} = i(g) (\kappa, \beta_1, \dots, \beta_l)$$

contradicting the fact that β is a generator of i (note that we used claim 3 when arguing that the generators β_i , $1 \le i \le l$, are represented the same way in the sense of H, H'). \square

Definition 2.20 A measure $W \in V[G]$ is called simply generated if $W = U_H$ for some $U \in V$, where H is generic for $\langle j_U(P) \setminus \kappa, \leq^* \rangle$ over $M_U[G]$.

Remark 2.21 Given a simply generated normal measure $W \in V[G]$ as above, the parameters U and H are uniquely defined from it. Indeed, we will prove in the next lemma that $U = W \cap V$ belongs to V, and is a normal measure with $\Delta \notin U$. Now, assume that there are H, H', generic over $M_U[G]$ for $\langle j_U(P) \setminus \kappa, \leq^* \rangle$, with $W = U_H = U_{H'}$. Then H, H' satisfy the conditions of lemma 2.18 (since j_U has no generators other than κ). Thus, by the theorem, H = H'.

Given $W \in V[G]$ normal on κ (which is not necessarily simply generated), we can say the following:

Lemma 2.22 Every normal measure $W \in V[G]$ on κ extends a measure $U = W \cap V \in V$ with $\Delta^* \notin U$.

Proof. First, let us argue that $U = W \cap V$ belongs to V. By [?], it suffices to prove that there are no new fresh unbounded subsets of cardinals in the interval $\left[\kappa, (2^{\kappa})^{V}\right] = \left[\kappa, \kappa^{+}\right]$. Thus, it suffices to prove the following pair of claims:

Claim 4 $P = P_{\kappa}$ does not add fresh unbounded subsets to κ .

Proof. The fact that there are no fresh unbounded subsets of κ follows essentially from the fact that there exists a normal measure on κ in V[G]: Given a normal measure $U \in V$ with $\Delta \notin U$, take any $U^* \in V[G]$ which extends it. Given a fresh unbounded $A \subseteq \kappa$, $A = j_{U^*}(A) \cap \kappa$ and thus, by elementarity, A belongs to the ground model N of Ult $(V[G], U^*)$. Now set $k_U \colon M_U \to N$ to be the function which maps $[f]_U$ to $[f]_{U^*}$. Then k_U is a well defined elementary embedding since $U \subseteq U^*$, and $\operatorname{crit}(k_U) > \kappa$ by normality of U^* . Since $2^{\kappa} = \kappa^+$ holds in N, k_U maps the sequence of subsets of κ to itself, and thus every subset of κ which belongs to N, already belongs to V. So the above set A belongs to V, which is a contradiction. \square

Claim 5 For every measurable (in V) $\lambda \leq \kappa$, P_{λ} doesn't add fresh unbounded subsets of λ^+ . In particular, P_{κ} does not add fresh subsets to λ^+ .

Proof. Let $f \in V[G]$ be the characteristic function of a fresh unbounded subset of λ^+ . Let f be a P_{λ} -name and assume that $p \in P$ forces that f is fresh.

Let $G \subseteq P_{\lambda}$ be generic over V. For every $\xi < \lambda^+$, let $p_{\xi} \in G$ be a condition which decides f_{ξ} . For every $\xi < \lambda^+$ there exists $\alpha_{\xi} < \lambda$ such that the support of p_{ξ} is bounded by α_{ξ} . Let $A \subseteq \lambda^+$ and $\alpha^* < \lambda$ be such that $|A| = \lambda^+$ and $\alpha_{\xi} = \alpha^*$ for every $\xi \in A$.

By shrinking $A \subseteq \lambda^+$ even further (to a set of cardinality λ^+), we can assume that there exists $q^* \in P_\lambda$ such that, for every $\xi \in A$, $p_\xi \upharpoonright_{\alpha^*} = q^* \upharpoonright_{\alpha^*}$, and $q^* \upharpoonright_{[\alpha^*,\lambda)}$ is trivial.

Let
$$h = \bigcup \{g \colon \exists \xi < \lambda \ q^* \Vdash f \models \xi = g\}$$
. Clearly, $h \colon \lambda^+ \to 2$ is a function and $q^* \Vdash f = \check{h}$. \square

Finally, let us argue that $\Delta^* \notin U$. Assume otherwise. Since $\Delta^* \in U$, $\Delta^* \in W$ and thus $\theta_{\kappa} = [\alpha \mapsto \theta_{\alpha}]_W < \kappa$ is the ordinal added by the forcing at stage κ in $j_W(P)$. By $\kappa - c.c.$ of the forcing $P = P_{\kappa}$, there exists $\mu < \kappa$ and a condition $p \in G$ such that $p \Vdash \underset{\sim}{\theta_{\kappa}} < \mu$. In particular,

$$X = \{\alpha < \kappa \colon p \upharpoonright_{\alpha} \Vdash \underset{\sim}{\mathcal{H}} \alpha < \mu\} \in W$$

Since supp (p) is bounded in κ ,

and let $\alpha \mapsto \theta_{\alpha}$ be a function in V which maps each $\alpha \in \Delta^*$ to the Q_{α} -name for θ_{α} .

there exists a Q_{κ} -name for an ordinal $\mathcal{Q}_{\kappa} = i (\alpha \mapsto \mathcal{Q}_{\alpha})(\kappa)$ below κ . Let $p \in G$ be a condition which decides the value of \mathcal{Q}_{κ} . Assume that $p \Vdash \mathcal{Q}_{\kappa} = \beta$. Then $\kappa \in i (\{\alpha < \kappa : p \upharpoonright_{\alpha} \Vdash \mathcal{Q}_{\alpha} = \beta\})$ and thus-

$$X = \{\alpha < \kappa \colon p \upharpoonright_{\alpha} \Vdash \underset{\alpha}{\mathcal{H}} = \beta\} \in U$$

However, this contradicts the density above p of the set of conditions $q \in P = P_{\kappa}$ for which there exists $\alpha \in X$ such that $q \upharpoonright_{\alpha} \Vdash \underset{\alpha}{\mathcal{H}} \not= \beta$ (it is dense since an Easton Support is used and X is unbounded in κ). \square

Lemma 2.23 Assume that there are not elements in $(\kappa, crit(k)) \cap i(\Delta)$. Then $crit(k) \in i(\Delta)$, namely, it is the least element above κ in $i(\Delta)$.

Remark 2.24 The assumption $(\kappa, \operatorname{crit}(k)) \cap i(\delta) = \emptyset$ holds in the natural case where $P = P_{\kappa}$ is an iteration of Prikry forcings. Indeed, assume, by contradiction, that there exists $\mu \in (\kappa, \lambda) \cap i(\Delta)$. Then $\mu = k(\mu)$, and thus in $M[j_W(G)]$, μ changes cofinality to ω . Therefore, in V[G], $\operatorname{cf}(\mu) = \omega$, and, in V, $\operatorname{cf}(\mu) \leq \kappa$. The sequence witnessing this belongs to $V \cap ({}^{\kappa}N)$ and thus, by our assumption on N, belongs already to N. This contradicts the measurability of μ in N.

Proof. Denote $\lambda = \operatorname{crit}(k)$. Then for some $h \in V$ and $\kappa = \beta_0 < \beta_1 < \ldots < \beta_k$,

$$\lambda = i(h) (\kappa, \beta_1, \dots, \beta_k)$$

By the definition of k, $\lambda > \kappa$.

We first prove that $\lambda \in i(\Delta)$. Assume otherwise. We can assume without loss of generality that for every $\xi, \nu_1, \ldots, \nu_k$ below κ , $h(\xi, \nu_1, \ldots, \nu_k) > \xi$ does not belongs to Δ : this can be assumed by replacing the function h with the function h': $[\kappa]^{n+1} \to \kappa$ defined as follows: For every $\xi, \eta_1, \ldots, \eta_k, h'(\xi, \eta_1, \ldots, \eta_k)$ equals $h(\xi, \eta_1, \ldots, \eta_k)$ if $h(\xi, \eta_1, \ldots, \eta_k) > \xi$ is not measurable in V; and else, $h'(\xi, \eta_1, \ldots, \eta_k)$ is an arbitrary non-measurable above ξ . By our assumption,

$$i(h)(\kappa, \beta_1, \dots, \beta_k) = i(h')(\kappa, \beta_1, \dots, \beta_k)$$

so we can replace h with h'. Since λ is regular (as a critical point of an elementary embedding), we can assume, using a similar argument, that each $h(\xi, \nu_1, \dots, \nu_k)$ is regular.

We can assume that for every ξ, μ_1, \dots, ν_k , there are no elements of Δ in the interval $(\xi, h(\xi, \nu_1, \dots, \nu_k))$.

Let $f \in V[G]$ be a function such that $[f]_W = \lambda$. Then

$$[f]_W = \lambda < k(\lambda) = j_W(h) \left(\kappa, d\left([f_{\beta_0}]_W \right), \dots, d\left([f_{\beta_k}]_W \right) \right)$$

By the definition of W, there exists $p \in G$ and $r \in H$ such that—

$$p \widehat{} r \Vdash i(\underline{f})(\kappa) < i(h)(\kappa, d(i(f_{\beta_1})(\kappa)), \dots, d(i(f_{\beta_k})(\kappa)))$$

Recall that, for every $1 \le i \le k$, there exists a condition in H forcing that $d(i(f_{\beta_i})(\kappa)) = \beta_i$. Thus by extending r inside H,

$$p \widehat{\ } r \Vdash i(f)(\kappa) < i(h)(\kappa, \beta_1, \dots, \beta_k)$$

Since there are no measurables of N in the interval $(\kappa, i(h) (\kappa, \beta_0, \dots, \beta_k)]$, we can find $r' \geq^* r$ inside H such that—

$$p \Vdash \exists \alpha < i(h) (\kappa, \beta_1, \dots, \beta_k), \ r' \Vdash i(f)(\kappa) < \alpha$$

and since $P = P_{\kappa}$ is κ -c.c. and $i(h)(\kappa, \beta_1, \dots, \beta_k)$ is regular, there exists $\alpha < i(h)(\kappa, \beta_1, \dots, \beta_k)$ such that—

$$p \hat{r}' \Vdash i(f)(\kappa) < \alpha$$

Now apply k on both sides. By lemma 2.17,

$$M[j_W(G)] \vDash \lambda = [f]_W < k(\alpha)$$

but $\alpha < i(h)(\kappa, \beta_1, \dots, \beta_k) = \lambda$ and thus $\lambda < k(\alpha) = \alpha < \lambda$, which is a contradiction. \square

Remark 2.25 Assume that $P = P_{\kappa}$ is an iteration of the one point Prikry forcings. A one point Prikry forcing on a measurable α is a forcing, which depends on a normal measure U on α , and is defined as follows: Conditions are of the form A where $A \in U$ or ξ for some ordinal $\xi < \alpha$. The latter kind of condition cannot be extended. A condition of the form A for $A \in U$ can be extended in two ways: A direct extension is a condition B where $B \in U$ and $B \subseteq A$; a non-direct extension is of the form ξ where $\xi \in A$ is an ordinal.

We argue that in this case, the question whether $(\kappa, \operatorname{crit}(k)) \cap i(\Delta) \neq \emptyset$, and, as a result, the value of $\operatorname{crit}(k)$, depend of the choice of H:

- 1. Denote by μ the first element above κ in $i(\Delta)$. Assume first that H is chosen such that the condition on coordinate μ is a measure one set. In this case, $\mu = \operatorname{crit}(k)$. Indeed, $\operatorname{crit}(k) < \mu$ cannot hold, since then $(\kappa, \operatorname{crit}(k)) \cap i(\Delta) = \emptyset$ which implies, by the last lemma, that $\mu = \operatorname{crit}(k)$. And $\mu < \operatorname{crit}(k)$ cannot hold since then $k(\mu) = \mu$. Denote by $\mu_0 < \mu$ the one point added below μ in $j_W(G)$. Then H at coordinate μ has a condition which is incompatible with μ_0 (by shrinking the large set and applying a density argument). Thus $\mu = \operatorname{crit}(k)$.
- 2. Denote now by μ the least element in $i(\Delta)$, for which H does not specify the one-point element added to it. We argue that $\operatorname{crit}(k) = \mu$, even though μ doesn't have to be the least element above κ in $i(\Delta)$.

Repeat the proof of the last lemma, and note that the \leq^* forcing in the interval (κ, μ) is trivial, since no condition in this interval can be non-trivially extended. This replaces the assumption that there are no elements of $i(\Delta)$ in the interval $(\kappa, i(h)(\kappa, \beta_1, \ldots, \beta_k))$. Therefore, $\mu = \text{crit}(k)$.

3 Easton Support Iterations of Prikry Forcings

Let us deal here with an Easton support iteration P of the Prikry forcings over a set Δ of a measurable length κ . Let U be a normal ultrafilter over κ in V with $\Delta \notin U$. Let $G \subseteq P$ be a generic and W be a normal ultrafilter in V[G] which extends U.

3.1 On $j_W(\kappa) > j_U(\kappa)$

Clearly, $j_W(\kappa) \geq j_U(\kappa)$. Our interest here will be in situations when a strict inequality holds. Note such phenomenon is impossible with the full or with the non-stationary support.

Start with the following simple observation:

Proposition 3.1 The set

$$\{j_W(f)(\kappa) \mid f : \kappa \to \kappa, f \in V\}$$

is unbounded in $j_W(\kappa)$.

Hence, $k''j_U(\kappa)$ is unbounded in $j_W(\kappa)$, where $k([f]_U) = [f]_W$ is the embedding defined in the section 1.

Proof. P satisfies κ -c.c. Hence for every $g: \kappa \to \kappa$ in V[G] there is $f: \kappa \to \kappa$ in V which dominates it, i.e., for every $\nu < \kappa$, $g(\nu) < f(\nu)$.

Let us present a first example of a situation where $j_W(\kappa) > j_U(\kappa)$.

Definition 3.2 (W. Mitchell) A cardinal κ is called μ -measurable iff there exists an extender E over κ such that $E_{\kappa} \in M_E$, where $E_{\kappa} = \{A \subseteq \kappa \mid \kappa \in j_E(A)\}$.

Note that we can use a witnessing extender E with two generators only - κ and the ordinal $\eta < 2^{2^{\kappa}}$ which codes E_{κ} . The ultrapower by such extender is closed under κ -sequences.

The next lemma is obvious:

Lemma 3.3 Suppose that κ is μ -measurable and E is an extender witnessing this. Then $j_{E_{\kappa}}(\kappa) < j_{E}(\kappa)$.

Proposition 3.4 Suppose that κ is μ -measurable and E is an extender witnessing this which ultrapower is closed under κ -sequences. Let $U = E_{\kappa}$ and $\Delta \subseteq \kappa$ be a set of measurable cardinals which is not in U. Force with an Easton support iteration P of the Prikry forcings over Δ . Let $G \subseteq P$ be a generic.

Then, in V[G], there is a normal ultrafilter W which extends U such that $j_W(\kappa) > j_U(\kappa)$.

Proof. Construct W as in theorem 2.7 using E, i.e., $i = j_E$ and $N = M_E$. Then $j_U(\kappa) < j_E(\kappa) = i(\kappa) = j_W(\kappa)$.

Let us observe now that we need a μ -measurable in order to have $j_W(\kappa) > j_U(\kappa)$, provided $V = \mathcal{K}$, where \mathcal{K} denotes the core model.

Proposition 3.5 Assume $\neg 0^{\P}$. Suppose that $V = \mathcal{K}$. Let U be a normal ultrafilter over κ and $\Delta \subseteq \kappa$ be a set of measurable cardinals which is not in U. Force with an Easton support iteration P of the Prikry forcings over Δ . Let $G \subseteq P$ be a generic.

Suppose that, in V[G], there is a normal ultrafilter W which extends U such that $j_W(\kappa) > j_U(\kappa)$.

Then κ is a μ -measurable in V. Moreover, U is a normal measure of a witnessing extender.

Proof. Suppose otherwise.

Consider $j_W \upharpoonright V$.

By Mitchell [6], it is a normal² iterated ultrapower of $\mathcal{K} = V$ by its measures and extenders. Recall that $W \cap V = U$, and so, $U = \{A \subseteq \kappa \mid A \in V, \kappa \in j_W(A)\}$. The assumption that U is not a normal measure of an extender which witnesses a μ -measurability of κ implies then that U must be used first in this iterated ultrapower.

Apply now the arguments of [3] in \mathcal{K}_U the core model of M_U . For every measurable $\alpha, \kappa \leq \alpha < j_U(\kappa)$, there will be a bound η_α (which depends on $o(\alpha)$) on number of possible applications of measures and extenders over α with their images, and, by the assumption that there is no strong cardinals, $\eta_\alpha < j_U(\kappa)$.

Let $C \subseteq j_U(\kappa)$ be the closure of the set $\{\alpha \mid \kappa \leq \alpha < j_U(\kappa), \alpha \text{ is a measurable in } \mathcal{K}_U\}$. Then the continuation j_W of j_U cannot move any point of C. This implies that $j_U(\kappa)$ does not move, and so, $j_U(\kappa) = j_W(\kappa)$.

²Extenders with smaller indexes are used first.

The situation changes if we do not assume $V = \mathcal{K}$. Let us argue now that the consistency strength of $j_W(\kappa) > j_U(\kappa)$ is just a measurable which is a limit of measurable cardinals.

Proposition 3.6 Let V_0 be a model of GCH with a measurable cardinal κ which is a limit of measurable cardinals.

Then there is a cardinal preserving generic extension V of V_0 which satisfies the following: Let Δ be an unbounded subset of κ consisting of measurable cardinals. Force with an Easton support iteration P of the Prikry forcings over Δ . Let $G \subseteq P$ be a generic.

There exists a normal ultrafilter U over κ in V and a normal ultrafilter W in V[G] which extends U such that $j_W(\kappa) > j_U(\kappa)$.

Proof. The idea is as follows. Let W be a normal ultrafilter over κ in V_0 which concentrates on non-measurable cardinals. Consider $W^2 = W \times W$ and $W^3 = W \times W \times W$.

Let $j_1 = j_W, j_2 = j_{W^2}, j_3 = j_{W^3}, M_1 = M_W, M_2 = M_{W^2}, M_3 = M_{W^3}, \kappa_1 = j(\kappa), \kappa_2 = j_2(\kappa), \kappa_3 = j_3(\kappa)$. We have natural commuting embeddings $j_{12}: M_1 \to M_2, j_{23}: M_2 \to M_3$ and $j_{13}: M_1 \to M_3$. Namely, $j_{12}(j_1(f)(\kappa)) = j_2(f)(\kappa), j_{23}(j_2(g)(\kappa, \kappa_1)) = j_3(g)(\kappa, \kappa_1)$, etc. Note that the critical point of j_{12}, j_{13} is κ_1 and of j_{23} is κ_2 . However there is an additional way to embed M_2 into M_3 . Define $\sigma: M_2 \to M_3$ by setting $\sigma(j_1(f)(\kappa, \kappa_1)) = j_3(f)(\kappa, \kappa_2)$. Clearly, σ is elementary and its critical point is κ_1 and it is moved to κ_2 .

The idea will be to force in order to extend W to a normal ultrafilter U such that

- 1. M_U is a generic extension of M_2 ,
- 2. W^3 extends to a κ -complete ultrafilter E with M_E a generic extension of M_3 ,
- 3. U is the normal ultrafilter which is strictly below E with the corresponding embedding extending σ .

Now, $\kappa_2 < \kappa_3$ will imply $j_U(\kappa) < j_E(\kappa)$, since $j_U(\kappa) = \kappa_2$ and $j_E(\kappa) = \kappa_3$.

Such construction was used in [2]. We refer to this paper for details. Let us only sketch the argument.

We force a Cohen function $f_{\alpha}: \alpha \to \alpha$ for every inaccessible $\alpha \leq \kappa$ using the iteration with an Easton support.

Denote a generic object which produces such $\langle f_{\alpha} \mid \alpha \leq \kappa, \alpha \text{ is an inaccessible } \rangle$ by G_0 . Let $V = V_0[G_0]$.

It is possible to extend all the embeddings, $j_1, j_2, j_3, j_{12}, j_{13}, j_{23}, \sigma$. We change one value of f_{κ_3} at κ by setting it to κ_2 . Let G_3 be such generic over M_3 Then, $j_3: V_0 \to M_3$

extends to $j_3^*: V_0[G_0] \to M_3[G_3]$. Derive now U and E from j_3^* , in $V = V_0[G_0]$, by setting $U = \{A \subseteq \kappa \mid \kappa \in j_3^*(A)\}$ and $E = \{B \subseteq \kappa^3 \mid \langle \kappa, \kappa_1, \kappa_2 \rangle \in j_3^*(B)\}$.

Finally we apply the construction of Section ?? to U and E to produce an extension W of U in V[G].

Note that U produced in 3.6 can be picked to be the minimal in the Mitchell order, which is not true about one of 3.4, where $V = \mathcal{K}$. Let us argue that under rather strong assumptions it is possible to find such U in \mathcal{K} .

Proposition 3.7 Let U be a normal ultrafilter over κ . Suppose that the set

$$\{\alpha < \kappa \mid \alpha \text{ is } \kappa - strong \}$$

is unbounded in κ . Force with P as above. Let $G \subseteq P$ be a generic. Then, in V[G], there is a normal ultrafilter W over κ such that

1. $U \subseteq W$,

- 2. $j_U(\kappa) < j_W(\kappa)$, moreover, $j_W \upharpoonright V = k \circ i$, where
 - $i: V \to N$,
 - $j_U(\kappa) < i(\kappa)$,
 - i, N satisfy the conditions of theorem 2.7.

Proof. Work in M_U . Pick some $\alpha, \kappa < \alpha < j_U(\kappa)$ which is $j_U(\kappa)$ —strong. Let $E \in M_U$ be an $(\alpha, j_U(\kappa))$ —extender witnessing this. Set N to be the ultrapower of M_U by E and let $i = j_E \circ j_U$. We have

$$\alpha < j_U(\kappa) \le j_E(\alpha) < j_E(j_U(\kappa)) = i(\kappa).$$

The rest is as above.

We do not know whether the assumption of 3.7 is really necessary. However it is possible to show the following.

Proposition 3.8 Suppose $\neg 0^{\P}$.

Assume $V = \mathcal{K}$.

Let U be a normal ultrafilter over κ which is minimal in the Mitchell order.

Let P be an Easton support iteration of Prikry type forcing notions up to κ and $G \subseteq P$ be a generic.

Suppose that W is a normal ultrafilter in V[G] which extends U.

Then $j_U(\kappa) = j_W(\kappa)$.

Proof. By W. Mitchell [6], $j_W \upharpoonright \mathcal{K}$ is a normal iterated ultrapower of \mathcal{K} by its measures and extenders.

The minimality of U implies that it must be used first in this iteration.

Apply now the arguments of [3] in \mathcal{K}_U the core model of M_U . For every measurable $\alpha, \kappa \leq \alpha < j_U(\kappa)$, there will be a bound η_α (which depends on $o(\alpha)$) on number of possible applications of measures and extenders over α with their images, and, by the assumption that there is no strong cardinals, $\eta_\alpha < j_U(\kappa)$.

Let $C \subseteq j_U(\kappa)$ be the closure of the set $\{\alpha \mid \kappa \leq \alpha < j_U(\kappa), \alpha \text{ is a measurable in } \mathcal{K}_U\}$.

Then the continuation j_W of j_U cannot move any point of C. This implies that $j_U(\kappa)$ does not move, and so, $j_U(\kappa) = j_W(\kappa)$.

We conjecture that the needed strength (for 3.8) is exactly

 $\{\alpha < \kappa \mid \alpha \text{ is } \kappa - \text{strong }\}$ is unbounded in κ .

Thus, R. Schindler [7] extension of the Mitchell result can be used to argue that $j_W \upharpoonright \mathcal{K}$ is a normal iterated ultrapower of \mathcal{K} by its measures and extenders. A missing part is an extension of [3] beyond strongs which is likely to hold.

3.2 Properties of k

Let $i: V \to N$ be an elementary embedding as in theorem 2.7, and assume that $W = U_H$ and $k: N \to M$ are as in lemma 2.15.

In the setting of iteration of Prikry forcings, much more can be said about the embedding $k \colon N \to M$. From remark 2.24, it follows that $\operatorname{crit}(k)$ is the least element in $i(\Delta)$ above κ . In particular, by elementarity, $k(\mu) \in j_W(\Delta)$ in M, and thus a Prikry sequence is added to $k(\mu)$ in $j_W(G)$.

Lemma 3.9 Denote $\mu = crit(k)$. Then μ appears in the Prikry sequence of $k(\mu)$.

Remark 3.10 μ is not necessarily the first element in the Prikry sequence of $k(\mu)$. The initial segment of this Prikry sequence below μ depends on the choice of H. For every finite sequence $t \in [\mu]^{<\omega}$, we can choose $H \subseteq i(P) \setminus \kappa$ such that t is an initial segment of the Prikry sequence of μ . This way, in $M[j_W(G)]$, t will be an initial segment of the Prikry sequence of $k(\mu)$ below μ .

Proof. Let t be the finite initial segment of the Prikry sequence of $k(\mu)$ below μ , and assume that $\langle \xi, \eta_1, \dots, \eta_l \rangle \mapsto t(\xi, \eta_1, \dots, \eta_l)$ is a function in V, such that—

$$t = i(\langle \xi, \eta_1, \dots, \eta_l \rangle \mapsto t(\xi, \eta_1, \dots, \eta_l))(\kappa, \beta_1, \dots, \beta_l)$$

for some generators β_1, \ldots, β_l of i. For every $\xi < \kappa$, let $s(\xi) = \min\{\Delta \setminus (\xi+1)\}$, so $[\xi \mapsto s(\xi)]_W = \mu$. In V[G], define, for every $\xi < \kappa$,

 $\mu(\xi)$ = the first element above $t(\xi, d(f_{\beta_1})(\xi), \dots, d(f_{\beta_l})(\xi))$ in the Prikry sequence of $s(\xi)$

and, if $t(\xi, d(f_{\beta_1})(\xi), \dots, d(f_{\beta_l})(\xi))$ is not an initial segment of the Prikry sequence of $s(\xi)$, set $\mu(\xi) = 0$.

It suffices to prove that $[\xi \mapsto \mu(\xi)]_W = \mu$.

Assume first that $\eta < \mu$. Work in N[G]. Since H is \leq^* -generic, it meets an element $q \in i(P) \setminus \kappa$, for which $A^q_{\mu} \subseteq \mu \setminus (\eta + 1)$. Since $q \in H$, we can assume that t^q_{μ} is an initial segment of t: Indeed, t, t^q_{μ} are compatible sequences, since, for any $p \in G$ which forces that $q \in H$ and decides the value of t^q_{μ} , the condition $k(p \cap q) = p \cap k(q)$ belongs to $j_W(G)$, and decides an initial segment, below μ , of the Prikry sequence of $k(\mu)$. By our assumption, this initial segment is contained in t, and $p \cap k(q)$ forces that every possible extension of it is above η . Thus, in $M[j_W(G)]$, each element in the Prikry sequence of $k(\mu)$ after t is strictly above η .

The argument given in the previous paragraph also shows that for every $q \in H$, t^q_{μ} is either empty or equals to t: As mentioned, it must be an initial segment of t. Let us argue that if it is proper, then it is empty. Apply the above paragraph for $\eta = \max(t)$. Then by direct extending q inside H, it forces that the element after t^q_{μ} in the Prikry sequence of μ is strictly above η . By applying $k \colon N \to M$, there exists a condition in $j_W(G)$ which forces that the Prikry sequence of $k(\mu)$ has an initial segment t^q_{μ} , followed only by elements above η . So t^q_{μ} cannot be a proper initial segment of t.

Assume now that $\eta < [\xi \mapsto \mu(\xi)]_W$. Write $\eta = [f]_W$ and assume that for every $\xi < \kappa$,

$$f(\xi) < \mu(\xi) < s(\xi)$$

Let $p \in G$ be a condition which forces this. Work in N[G]. Take $q \in H$ such that $t^q_{\mu} = t$. Then $i(p) \cap q = p \cap q$ forces that $i(f)(\kappa)$ is below the first element above t in the Prikry sequence of μ . Thus, its value can be decided by taking a direct extension. So, by direct extending q inside H we can assume that—

$$p \Vdash \exists \alpha < \mu, \ q \Vdash i(\underline{f})(\kappa) < \alpha$$

and thus there exists $\alpha < \mu$ in V, such that—

$$p \cap q \Vdash i(f)(\kappa) < \alpha$$

Thus, in $M[j_W(G)]$, $\eta = j_W(f)(\kappa) < k(\alpha) = \alpha < \mu$, as desired. \square

In the next subsection we will decompose the embedding k to an iterated ultrapower of N. We now demonstrate the first step in the iteration:

Lemma 3.11 Let $\mu = crit(k)$ and let $U_{\mu} = \{X \subseteq \mu : \mu \in k(X)\} \cap N$. Then $U_{\mu} \in N$.

Proof. For every $\xi < \kappa$, denote by W_{ξ} the measure in $V[G_{\xi}]$ used to singularize ξ in the Prikry forcing at stage ξ in the iteration. Let $U_{\xi} = W_{\xi} \cap V$. We first argue that there exists a set $\mathcal{F} \in N$ of measures on μ , with $|\mathcal{F}| < \mu$, such that, for some $p \in G$ and $q \in H$,

(1)
$$p^{\smallfrown}q \Vdash i\left(\xi \mapsto U_{\xi}\right)(\mu) \in \mathcal{F}$$

Indeed, let α be a $j_U(P)$ -name for the index of $i(\xi \mapsto U_{\xi})(\mu)$ in a prescribed well order of the normal measures μ carries in N. Work in N[G]. For some $q \in H$, there exists an ordinal β such that $q \Vdash \alpha = \beta$. Thus, by $\kappa - c.c.$ of the forcing $i(P)_{\mu} = P_{\kappa}$, there exist $p \in G$ and a set $S \subseteq 2^{2^{\mu}}$ of ordinals with $|S| < \mu$, such that $p \cap q \Vdash \alpha \in S$. In particular, $p \cap q$ forces that $i(\xi \mapsto U_{\xi})(\mu)$ belongs to \mathcal{F} , where \mathcal{F} is the set of measures on μ indexed in S.

Now apply k on equation (1), and work in $M[j_W(G)]$. Since $|\mathcal{F}| < \mu$, it follows that there exists a measure $F \in \mathcal{F}$ such that—

$$j_{W}\left(\xi\mapsto U_{\xi}\right)\left(k\left(\mu\right)\right)=k\left(F\right)$$

so it suffices to argue that $F = \{X \subseteq \mu : \mu \in k(X)\} \cap N$. Fix $X \in F$. Write $X = i(g)(\kappa, \beta_0, \dots, \beta_k)$. Then-

$$j_W(g)\left(\kappa, d\left([f_{\beta_1}]_W\right), \dots, d\left([f_{\beta_k}]_W\right)\right) \in j_W\left(\xi \mapsto U_\xi\right)\left(k(\mu)\right)$$

Recall the function $\xi \mapsto s(\xi) = \min(\Delta \setminus (\xi + 1))$, for which $[\xi \mapsto s(\xi)]_W = k(\mu)$. We can assume that for every $\xi < \kappa$,

$$g(\xi, d(f_{\beta_1}(\xi)), \dots, d(f_{\beta_k}(\xi))) \in U_{s(\xi)}$$

and let $p \in G$ be a condition which forces this. Then for strong enough $q \in H$,

$$p \cap q \Vdash i(g) (\kappa, \beta_1, \dots, \beta_k) \in i (\xi \mapsto U_{\xi}) (\mu)$$

and thus by direct extending q further, we can assume that q forces that the first element after t in the Prikry sequence of μ belongs to $i(g)(\kappa, \beta_1, \ldots, \beta_k) = X$. Thus $k(q) \in j_W(G)$ forces that the first element after t in the Prikry sequence of $k(\mu)$ belongs to k(X). By the previous lemma, it follows that $\mu \in k(X)$, as desired. \square

3.3 Description of $j_W \upharpoonright_V$

We now generalize the previous subsection, in order to completely decompose $j_W \upharpoonright_V$. For technical reasons, we will assume that the measures used in the iteration $P = P_{\kappa}$ to singularize the measurables in Δ are all simply generated; this is needed only in the proof of claim 7 which will be presented in the next subsection.

At each stage $\alpha \in \Delta$, let Q_{α} be the P_{α} -name for the Prikry forcing on α , using a simply generated normal measure W_{α} on α . Denote $U_{\alpha} = W_{\alpha} \cap V \in V$. Let $H_{\alpha} \subseteq (j_{\mathcal{U}_{\alpha}}(P_{\alpha}) \setminus \alpha, \leq^*)$, $H_{\alpha} \in V[G_{\alpha}]$, be \leq^* -generic over $M_{\mathcal{U}_{\alpha}}[G_{\alpha}]$, such that $W_{\alpha} = (U_{\alpha})_{\mathcal{H}_{\alpha}}$. Let $G \subseteq P_{\kappa}$ be generic over V.

Our goal is to prove the following theorem:

Theorem 3.12 Let $H \in V[G]$ be a generic set for $\langle i(P) \setminus \kappa, \leq^* \rangle$ which satisfies (*). Let $W = U_H$ be the corresponding normal measure on κ extending U, and denote its ultrapower embedding $j_W : V[G] \to M[j_W(G)] \simeq Ult(V[G], W)$ for some model M. Then $j_W \upharpoonright_V factors$ to the form $j_W \upharpoonright_V = k \circ i$ for some elementary $k : N \to M$.

Moreover, if P is an Easton support iteration, where at each step $\beta \in \Delta$, Q_{β} is forced to be Prikry forcing with a simply generated normal measure on β , then k is an iterated ultrapower of N by normal measures and $j_W(\kappa) = i(\kappa)$.

This, in contrast to Full-Support and Nonstationary-Support iterations of Prikry forcings, where, assuming $GCH_{\leq \kappa}$, $j_W \upharpoonright_V$ is an iteration of V by normal measures only.

If all the measures considered, including W, are simply generated, $j_W \upharpoonright_V$ is an iterated ultrapower by normal measures only:

Theorem 3.13 Assume that P is an Easton support iteration, where at each step $\beta \in \Delta$, Q_{β} is forced to be Prikry forcing with a simply generated normal measure on β . Then for every simply generated measure $W \in V[G]$ on κ , $j_W \upharpoonright_V$ is an iteration of V by normal measures. Moreover, if $U = W \cap V$ then $j_W(\kappa) = j_U(\kappa)$.

We will prove theorems 3.13 and 3.12 simultaneously. Assume that $H \in V[G]$ is a generic for $\langle i(P) \setminus \kappa, \leq^* \rangle$ over N[G] with the property (*). In the case where $i = j_U$ and $N = M_U$, any generic for $\langle i(P) \setminus \kappa \rangle, \leq^* \rangle$ is such. Let $W = U_H \in V[G]$ be the corresponding normal measure on κ . Let $j_W: V[G] \to M[j_W(G)]$ be the corresponding ultrapower embedding.

For every $\beta \in B$, let f_{β} be the function in V such that H forces that $\beta = \theta_{i(f)(\kappa)} = d(i(f)(\kappa))$ (such $f_{\beta} \in V$ exists since H satisfies (*)). The mapping $\beta \mapsto f_{\beta}$ is available in V[G].

Recall the embedding $k \colon N \to M$ defined in lemma 2.15. In our context, it is defined as follows:

$$k\left(i(f)\left(\kappa,\beta_{1},\ldots,\beta_{k}\right)\right)=j_{W}(f)\left(\kappa,d\left(\left[f_{\beta_{1}}\right]_{W}\right),\ldots,d\left(\left[f_{\beta_{k}}\right]_{W}\right)\right)$$

then k is elementary, $\operatorname{crit}(k) > \kappa$ and $j_W \upharpoonright_V = k \circ i$.

Denote $\kappa^* = i(\kappa)$. Define by induction a linear directed system $\langle \langle M_\alpha \colon \alpha \leq \kappa^* \rangle, \langle j_{\alpha,\beta} \colon \alpha < \beta \leq \kappa^* \rangle \rangle$ such that:

- 1. $M_0 = N, j_0 = i$.
- 2. Successor Step: Assume that $\alpha < \kappa^*$ and M_{α} has been defined. We will define an elementary embedding $k_{\alpha} \colon M_{\alpha} \to M$, such that $j_W \upharpoonright_V = k_{\alpha} \circ j_{\alpha}$. We denote $\mu_{\alpha} = \operatorname{crit}(k_{\alpha})$ and define—

$$U_{\mu_{\alpha}} = \{ X \subseteq \mu_{\alpha} \colon \mu_{\alpha} \in k_{\alpha}(X) \} \cap M_{\alpha}$$

We will prove that $U_{\mu_{\alpha}} \in M_{\alpha}$ and take $M_{\alpha+1} \simeq \text{Ult } (M_{\alpha}, U_{\mu_{\alpha}})$. We also take $j_{\alpha,\alpha+1} \colon M_{\alpha} \to M_{\alpha+1}$ to be the ultrapower embedding $j_{U_{\mu_{\alpha}}}^{M_{\alpha}}$, and $j_{\alpha+1} = j_{\alpha,\alpha+1} \circ j_{\alpha}$.

3. **Limit Step:** For every limit $\alpha \leq \kappa^*$, the system $\langle M_{\beta} : \beta < \alpha \rangle$, $\langle j_{\beta,\gamma} : \beta < \gamma < \alpha \rangle$ is linearly directed, and we take direct limit to form the model M_{α} and the embedding $j_{\alpha} : V \to M_{\alpha}$.

For every $\alpha < \kappa^*$, define $k_\alpha \colon M_\alpha \to M$ as follows:

$$k_{\alpha}\left(j_{\alpha}\left(f\right)\left(\kappa, j_{0,\alpha}(\beta_{1}), \ldots, j_{0,\alpha}\left(\beta_{l}\right), \mu_{\alpha_{1}}, \ldots, \mu_{\alpha_{k}}\right)\right) = j_{W}\left(f\right)\left(\kappa, d\left(\left[f_{\beta_{1}}\right]_{W}\right), \ldots, d\left(\left[f_{\beta_{l}}\right]_{W}\right), \mu_{\alpha_{1}}, \ldots, \mu_{\alpha_{k}}\right)$$
 for every $f \in V$, $\beta_{1}, \ldots, \beta_{l}$ generators of i and $\alpha_{1} < \ldots < \alpha_{k} < \alpha$.

Our goal is to prove by induction on $\alpha < \kappa^*$ the following properties:

- (A) $k_{\alpha} : M_{\alpha} \to M$ is an elementary embedding, and $j_W \upharpoonright_V = k_{\alpha} \circ j_{\alpha}$.
- (B) μ_{α} is measurable in M_{α} . Moreover, it is the least measurable in $j_{\alpha}(\Delta)$, which is greater or equal to $\sup\{\mu_{\beta}: \beta < \alpha\}$, and whose cofinality is above κ in V.
- (C) $\mu_{\mu_{\alpha}}$ appears in the Prikry sequence of $k_{\alpha}(\mu_{\alpha})$.
- (D) Let $U_{\mu_{\alpha}}$ be defined in V[G] as above. Then $U_{\mu_{\alpha}} \in M_{\alpha}$ is a normal measure which concentrates on $\mu_{\alpha} \setminus j_{\alpha}(\Delta)$. Moreover,

$$k_{\alpha}(U_{\mu_{\alpha}}) = j_{W}(\delta \mapsto U_{\delta})(k_{\alpha}(\mu_{\alpha}))$$

where, for every $\delta \in \Delta$, $U_{\delta} = W_{\delta} \cap V$, for W_{δ} which is the measure used in the Prikry forcing at stage δ in the iteration P.

After that, we will prove in lemma 3.26, that $k_{\kappa^*}: M_{\kappa^*} \to M$ is the identity, and thus $j_W \upharpoonright_V = j_{\kappa^*}$. This will conclude the proof of theorems 3.13 and 3.12.

Remark 3.14 We remark that k_{α} is well defined is the sense that there is no $\alpha' < \alpha$ and generator β of i, for which $j_{0,\alpha}(\beta) = \mu_{\alpha'}$. Indeed, assume otherwise. Note that $\mu_{\alpha'} = j_{0,\alpha}(\beta) \geq j_{0,\alpha'}(\beta)$. Strict inequality is not possible here, since if $j_{0,\alpha'}(\beta) < \mu_{\alpha'}$ then $j_{0,\alpha'}(\beta) = j_{0,\alpha}(\beta) = \mu_{\alpha'}$, which is a contradiction. Thus, $j_{0,\alpha'}(\beta) = \mu_{\alpha'}$ (which is, by itself, possible for $\alpha' < \alpha$ - see remark 3.15), but then, applying $j_{\alpha',\alpha}$ on both sides, we get-

$$j_{0,\alpha}(\beta) = j_{\alpha',\alpha}(\mu_{\alpha'}) > \mu_{\alpha'}$$

where the last inequality follows since $\mu_{\alpha'} = \operatorname{crit}(j_{\alpha',\alpha})$.

Remark 3.15 It is possible that a generator β of i is measurable in N and belongs to $i(\Delta)$. In this case, there exists $\alpha < \kappa^*$ such that $\mu_{\alpha} = \beta = j_{0,\alpha}(\beta)$. Let us observe the following points regarding this situation:

1. β is still measurable in M_{α} , and is the critical point of k_{α} . Also, $\beta = \mu_{\alpha}$ appears in the Prikry sequence of $k_{\alpha}(\mu_{\alpha}) = k_{\alpha}(\beta) = d([f_{\beta}]_{W})$ in $M[j_{W}(G)]$. In particular, $d([f_{\beta}]_{W})$ is itself a measurable cardinal in M, by elementarity of k_{α} . So $d([f_{\beta}]_{W})$ appears as a first element in the Prikry sequence of $[f_{\beta}]_{W}$, and also, has a Prikry sequence added to it, in which $\mu_{\alpha} = \beta$ appears (not necessarily as first element).

2. The Prikry sequences, both of $[f_{\beta}]_W$ and $d([f_{\beta}]_W)$, have a final segment which is generated by taking an iterated ultrapower with a single measure, over some finite sub-iteration of $\langle M_{\alpha} \colon \alpha < \kappa^* \rangle$; The main difference will be that $\beta = \mu_{\alpha}$ is part of this final segment in the Prikry sequence of $d([f_{\beta}]_W)$, while $d([f_{\beta}]_W)$ is not part of this final segment in the Prikry sequence of $[f_{\beta}]_W$. Indeed, it is not possible that $d([f_{\beta}]_W) = \mu_{\alpha'}$ for some $\alpha' < \kappa^*$, since such $\mu_{\alpha'}$ is not measurable in M – its measurability is destroyed when moving to $M_{\alpha+1} = \text{Ult}(M_{\alpha}, U_{\mu_{\alpha'}})$ – but $d([f_{\beta}]_W)$ is measurable in M.

Properties (A) - (D) of k_{α} , presented above, will be proved by induction on $\alpha < \kappa^*$. The proof of the inductive step at stage $\alpha < \kappa^*$ will be carried out in subsection 3.5, using the tools presented in [19] and [23]. Fixing $\alpha < \kappa^*$, we can assume by induction that $k_{\alpha'} \colon M_{\alpha'} \to M$ and $\mu_{\alpha'}, U_{\mu_{\alpha'}}$, for $\alpha' < \alpha$, satisfy properties (A) - (D). Denote by $t_{\alpha'}$ the initial segment of the Prikry sequence of $k_{\alpha'}(\mu_{\alpha'})$ below $\mu_{\alpha'}$.

Definition 3.16 Fix $\alpha < \kappa^*$ and a sequence of generators $\langle \beta_1, \ldots, \beta_l \rangle$ for i. An increasing sequence $\langle \alpha_1, \ldots, \alpha_k \rangle$ below α is called a $\langle \beta_1, \ldots, \beta_l \rangle$ -nice sequence if there are functions $g_1, \ldots, g_k, t_1, \ldots, t_k$ in V, such that-

$$\mu_{\alpha_{1}} = j_{\alpha_{1}}(g_{1})(\kappa, j_{0,\alpha_{1}}(\beta_{1}), \dots, j_{0,\alpha_{1}}(\beta_{l}))$$

$$t_{\alpha_{1}} = j_{\alpha_{1}}(t_{\alpha_{1}})(\kappa, j_{0,\alpha_{1}}(\beta_{1}), \dots, j_{0,\alpha_{1}}(\beta_{l}))$$

$$U_{\mu_{\alpha_{1}}} = j_{\alpha_{1}}(F_{1})(\kappa, j_{0,\alpha_{1}}(\beta_{1}), \dots, j_{0,\alpha_{1}}(\beta_{l}))$$

and, for every $1 \le i < k$,

$$\mu_{\alpha_{i+1}} = j_{\alpha_{i+1}} (g_{i+1}) (\kappa, j_{0,\alpha_1} (\beta_1), \dots, j_{0,\alpha_1} (\beta_l), \mu_{\alpha_1}, \dots, \mu_{\alpha_i})$$

$$t_{\alpha_{i+1}} = j_{\alpha_{i+1}} (t_{i+1}) (\kappa, j_{0,\alpha_1} (\beta_1), \dots, j_{0,\alpha_1} (\beta_l), \mu_{\alpha_1}, \dots, \mu_{\alpha_i})$$

$$U_{\mu_{\alpha_{i+1}}} = j_{\alpha_{i+1}} (F_{i+1}) (\kappa, j_{0,\alpha_1} (\beta_1), \dots, j_{0,\alpha_1} (\beta_l), \mu_{\alpha_1}, \dots, \mu_{\alpha_i})$$

Fix now $\alpha < \kappa^*$. Assume by induction that properties (A) - (D) above hold for every $\alpha' < \alpha$. Fix also a sequence of generators $\langle \beta_1, \ldots, \beta_l \rangle$ for i, and a $\langle \beta_1, \ldots, \beta_l \rangle$ -nice sequence $\langle \alpha_1, \ldots, \alpha_k \rangle$ below α . We define, in V[G], functions which can be used to represent μ_{α_i} , t_{α_i} , U_{α_i} . Assume that μ_{α_i} is the n_i -th element in the Prikry sequence of $k_{\alpha_i}(\mu_{\alpha_i})$.

First, set-

 $\mu_{\alpha_1}(\xi)$ = the n_1 -th element in the Prikry sequence of $g_1(\xi, d(f_{\beta_1}(\xi)), \dots, d(f_{\beta_l}(\xi)))$

By induction, define, for every i < k,

$$\mu_{\alpha_{i+1}}(\xi)$$
 = the n_{i+1} -th element in the Prikry sequence of
$$g_{i+1}(\xi, d\left(f_{\beta_1}(\xi)\right), \dots, d\left(f_{\beta_l}(\xi)\right), \mu_{\alpha_1}(\xi), \dots, \mu_{\alpha_i}(\xi))$$

and $U_{\mu_{\alpha_i}}(\xi) = W_{\mu_{\alpha_i}(\xi)} \cap V$. Here, given $\delta \in \Delta$, W_{δ} is the measure on δ used in the Prikry forcing which was applied at stage δ in the iteration.

Claim 6
$$[\xi \mapsto \mu_{\alpha_i}(\xi)]_W = \mu_{\alpha_i}$$
 and $[\xi \mapsto U_{\mu_{\alpha_i}(\xi)}]_W = k_{\alpha_i}(U_{\mu_{\alpha_i}})$.

Proof. We begin by proving that $[\xi \mapsto \mu_{\alpha_i}(\xi)]_W = \mu_{\alpha_i}$. We present the argument for i = 1. Higher values of $i \leq k$ are proved similarly, using induction. Recall that—

$$\mu_{\alpha_1} = j_{\alpha_1} \left(g_1 \right) \left(\kappa, j_{0,\alpha_1} \left(\beta_1 \right), \dots, j_{0,\alpha_1} \left(\beta_l \right) \right)$$

and by applying k_{α_1} on both sides,

$$k_{\alpha_1}(\mu_{\alpha_1}) = j_W(g_1)(\kappa, d([f_{\beta_1}(\xi)]_W), \dots, d([f_{\beta_l}(\xi)]_W))$$

By induction, μ_{α_1} is the n_1 -th element in the Prikry sequence of $k_{\alpha_1}(\mu_{\alpha_1})$, and thus it is represented as the n_1 -th element in the Prikry sequence of $g_1(\xi, d(f_{\beta_1}(\xi)), \ldots, d(f_{\beta_l}(\xi)))$.

As for $\left[\xi \mapsto U_{\mu_{\alpha_i}(\xi)}\right]_W = k_{\alpha_i}\left(U_{\mu_{\alpha_i}}\right)$, this follows since, by induction,

$$k_{\alpha_i}(U_{\mu_{\alpha_i}}) = j_W(\delta \mapsto U_\delta)(k_{\alpha_i}(\mu_{\alpha_i}))$$

Let us argue that $k_{\alpha} \colon M_{\alpha} \to M$ is elementary.

Lemma 3.17 $k_{\alpha} \colon M_{\alpha} \to M$ is elementary.

Proof. Assume that $x, y \in M_{\alpha}$, and let us prove, for example, that $x \in y$ if and only if $k(x) \in k(y)$. Let $f, g \in V, \beta_1, \ldots, \beta_l$ and $\alpha_1 < \ldots < \alpha_k < \alpha$ be such that—

$$x = j_{\alpha}(f)\left(\kappa, j_{0,\alpha}\left(\beta_{1}\right), \dots, j_{0,\alpha}\left(\beta_{l}\right), \mu_{\alpha_{1}}, \dots, \mu_{\alpha_{k}}\right), \quad y = j_{\alpha}(g)\left(\kappa, j_{0,\alpha}\left(\beta_{1}\right), \dots, j_{0,\alpha}\left(\beta_{l}\right), \mu_{\alpha_{1}}, \dots, \mu_{\alpha_{k}}\right)$$

Assume that $\alpha = \alpha' + 1$ is successor (the limit case is simpler). For simplicity, we assume also that $\alpha_k = \alpha'$. Then $x \in y$ if and only if—

$$\mu_{\alpha'} \in j_{\alpha',\alpha} \left(\{ \xi < \mu_{\alpha'} : j_{\alpha'}(f) \left(\kappa, j_{0,\alpha'}(\beta_1), \dots, j_{0,\alpha'}(\beta_l), \mu_{\alpha_1}, \dots, \mu_{\alpha_{k-1}}, \xi \right) \in j_{\alpha'}(g) \left(\kappa, j_{0,\alpha'}(\beta_1), \dots, j_{0,\alpha'}(\beta_l), \mu_{\alpha_1}, \dots, \mu_{\alpha_{k-1}}, \xi \right) \} \right)$$

which is equivalent to-

$$\{\xi < \mu_{\alpha'} \colon j_{\alpha'}(f)\left(\kappa, j_{0,\alpha'}(\beta_1), \dots, j_{0,\alpha'}(\beta_l), \mu_{\alpha_1}, \dots, \mu_{\alpha_{k-1}}, \xi\right) \in j_{\alpha'}(g)\left(\kappa, j_{0,\alpha'}(\beta_1), \dots, j_{0,\alpha'}(\beta_l), \mu_{\alpha_1}, \dots, \mu_{\alpha_{k-1}}, \xi\right)\} \in U_{\mu_{\alpha'}}$$

which, by the definition of $U_{\mu_{\alpha'}}$, is equivalent to-

$$\mu_{\alpha'} \in k_{\alpha'} \left(\left\{ \xi < \mu_{\alpha'} : j_{\alpha'}(f) \left(\kappa, j_{0,\alpha'}(\beta_1), \dots, j_{0,\alpha'}(\beta_l), \mu_{\alpha_1}, \dots, \mu_{\alpha_{k-1}}, \xi \right) \in j_{\alpha'}(g) \left(\kappa, j_{0,\alpha'}(\beta_1), \dots, j_{0,\alpha'}(\beta_l), \mu_{\alpha_1}, \dots, \mu_{\alpha_{k-1}}, \xi \right) \right\} \right)$$

namely $k_{\alpha}(x) \in k_{\alpha}(y)$.

Let us describe now the main ideas behind the proof that $\mu_{\alpha} = \operatorname{crit}(k_{\alpha})$ is measurable in M_{α} . Note that this is not trivial since $k_{\alpha} \colon M_{\alpha} \to M$ is not definable in M_{α} . The full argument will be presented in lemma 3.23, but will require a technical theorem (theorem 3.18). Mainly we would like to follow the methods developed in [19] and [23], which deal with nonstationary and full support iterations of Prikry forcings, respectively.

We consider the function $f \in V[G]$, for which $\mu_{\alpha} = [f]_{W}$. We will prove that if μ_{α} is not measurable in M_{α} , then $\mu_{\alpha} = [f]_{W} \in \text{Im}(k_{\alpha})$, contradicting the fact that $\mu_{\alpha} = \text{crit}(k_{\alpha})$. For that, we first fix a function $h \in V$ such that, for some sequence $\beta_{1}, \ldots, \beta_{l}$ of generators of i, and for some nice sequence $\langle \alpha_{1}, \ldots, \alpha_{k} \rangle$ below α ,

$$\mu_{\alpha} = j_{\alpha}(h) (\kappa, j_{0,\alpha}(\beta_1), \dots, j_{0,\alpha}(\beta_l), \mu_{\alpha_1}, \dots, \mu_{\alpha_k})$$

since $\mu_{\alpha} = \operatorname{crit}(k_{\alpha})$, we can assume that for every $\xi < \kappa$,

$$f(\xi) < h(\xi, d(f_{\beta_1}(\xi)), \dots, d(f_{\beta_l}(\xi)), \mu_{\alpha_1}(\xi), \dots, \mu_{\alpha_k}(\xi))$$

Pick a condition $p \in G$ which forces this. For every $\xi < \kappa$, $\vec{\eta} = \langle \eta_1, \dots, \eta_l \rangle$ and $\vec{\nu} = \langle \nu_1, \dots, \nu_k \rangle$, denote—

 $e\left(\xi,\vec{\eta},\vec{\nu}\right) = \left\{r \in P \setminus \nu_k : \text{ there exists a bounded subset } A \subseteq h\left(\xi,\vec{\eta},\vec{\nu}\right) \text{ such that } r \Vdash f(\xi) \in A\right\}$

This set is \leq^* -dense open above conditions which extend p and force that—

(2)
$$\langle d(f_{\beta_1}(\xi)), \dots, d(f_{\beta_l}(\xi)), \mu_{\alpha_1}(\xi), \dots, \mu_{\alpha_k}(\xi) \rangle = \langle \vec{\eta}, \vec{\nu} \rangle$$

We would like to follow [19] and [23], and construct a condition $p^* \in G$ above p, such that, very roughly³, for every $\xi, \vec{\eta}, \vec{\nu}$ as above, and for every extension r of p^* which forces (2),

$$r \upharpoonright_{\nu_k} \Vdash r \backslash_{\nu_k} \in e(\xi, \vec{\eta}, \vec{\nu})$$

Essentially, such p^* will have the following property: every extension r of it which forces that equation (2) holds, forces also that $f(\xi)$ belongs to a bounded subset $A(\xi, \vec{\eta}, \vec{\nu}) \subseteq h(\xi, \vec{\eta}, \vec{\nu})$ (which depends only on p^* and $\langle \xi, \vec{\eta}, \vec{\nu} \rangle$, and not on the choice of the extension of p^* which forces (2)). In [19] and [23] the construction of such p^* was done by a Fusion argument which allows, in a sense, to absorb a lot of data into a single direct extension p^* of p. Such a method is not available in the Easton support iteration. We bypass this problem by constructing, for every sequence $\langle \xi, \eta_1, \ldots, \eta_l \rangle$, a system of non-direct extensions of p,

$$\langle p(\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_k) : \nu_1 < \dots < \nu_k < \kappa \rangle$$

and sets-

$$\langle A(\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_k) : \nu_1 < \dots < \nu_k < \kappa \rangle$$

such that the following properties hold:

- 1. If $p(\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_k)$ forces (2), then it also forces that $f(\xi) \in A(\xi, \vec{\eta}, \vec{\nu})$, which is a bounded subset of $h(\xi, \vec{\eta}, \vec{\nu})$.
- 2. For a set of ξ -s in W, $p(\xi, d(f_{\beta_1}(\xi)), \ldots, d(f_{\beta_l}(\xi)), \mu_{\alpha_1}(\xi), \ldots, \mu_{\alpha_k}(\xi))$ belongs to G.

This suffices, since, by combining the above properties,

$$V[G] \vDash \{\xi < \kappa : f(\xi) \in A(\xi, d(f_{\beta_1}(\xi)), \dots, d(f_{\beta_l}(\xi)), \mu_{\alpha_1}(\xi), \dots, \mu_{\alpha_k}(\xi))\} \in W$$

and thus, in $M[j_W(G)]$,

$$\mu_{\alpha} = [f]_{W} \in [\xi \mapsto A(\xi, d(f_{\beta_{1}}(\xi)), \dots, d(f_{\beta_{l}}(\xi)), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{k}}(\xi))]_{W}$$
$$= k_{\alpha} (j_{\alpha}(\langle \xi, \vec{\eta}, \vec{\nu} \rangle \mapsto A(\xi, \vec{\eta}, \vec{\nu})) (\kappa, \beta_{1}, \dots, \beta_{l}, \mu_{1}, \dots, \mu_{k})) \subset \operatorname{Im}(k_{\alpha})$$

where the last inclusion follows since $j_{\alpha}(\langle \xi, \vec{\eta}, \vec{\nu} \rangle \mapsto A(\xi, \vec{\eta}, \vec{\nu}))(\kappa, \beta_1, \dots, \beta_l, \mu_1, \dots, \mu_k)$ is a bounded subset of $\mu_{\alpha} = j_{\alpha}(h)(\kappa, \beta_1, \dots, \beta_l, \mu_{\alpha_1}, \dots, \mu_{\alpha_k})$.

We will complete the missing details in the proof in lemma 3.23. Before that, we present the proof of theorem 3.18.

³We omitted some of the details in the version described here, for sake of simplicity.

3.4 Theorem 3.18 and its proof

We devote this subsection to the proof of the following theorem:

Theorem 3.18 Let $p \in G$ be a condition. Assume that for every increasing sequence $\langle \xi, \nu_1, \dots, \nu_k \rangle$, and for every $\vec{\eta} = \langle \eta_1, \dots, \eta_l \rangle$ above ξ , the set-

$$e(\xi, \eta_1, \ldots, \eta_l, \nu_1, \ldots, \nu_k) \subset P \setminus \nu_k$$

is \leq^* dense open above conditions in $P \setminus \nu_k$ which force that—

$$\langle \eta_1, \ldots, \eta_l, \nu_1, \ldots, \nu_k \rangle = \langle d(f_{\beta_1}(\xi)), \ldots, d(f_{\beta_l}(\xi)), \mu_{\alpha_1}(\xi), \ldots, \mu_{\alpha_k}(\xi) \rangle$$

Then there are $s < \omega$, a new sequence of generators $\beta'_l, \ldots, \beta'_s$ of i which contains β_1, \ldots, β_l , and a system of extensions of p,

$$\langle p(\xi, \eta_1, \dots, \eta_s, \nu_1, \dots, \nu_k) : \eta_1, \dots, \eta_s < \kappa, \nu_1 < \dots < \nu_k < \kappa \rangle$$

with the following properties:

1. There exists a set of ξ -s in W for which-

$$p\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{k}}(\xi)\right) \upharpoonright_{\mu_{\alpha_{k}}(\xi)} \vdash p\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{k}}(\xi)\right) \backslash \mu_{\alpha_{k}}(\xi) \in e\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{k}}(\xi)\right)$$

2. There exists a set of ξ -s in W for which-

$$p\left(\xi, d\left(f_{\beta_1'}(\xi)\right), \dots, d\left(f_{\beta_s'}(\xi)\right), \mu_{\alpha_1}(\xi), \dots, \mu_{\alpha_k}(\xi)\right) \in G$$

(Intuitively, for the majority of values of $\langle \xi, \eta_1, \dots, \eta_s, \nu_1, \dots, \nu_k \rangle$, the condition $p(\xi, \eta_1, \dots, \eta_s, \nu_1, \dots, \nu_k)$ which we will construct, forces that—

$$\langle d(f_{\beta_1}(\xi)), \dots, d(f_{\beta_s}(\xi)), \mu_{\alpha_1}(\xi), \dots, \mu_{\alpha_k}(\xi) \rangle = \langle \eta_1, \dots, \eta_s, \nu_1, \dots, \nu_k \rangle$$

and its final segment belongs to $e(\xi, \eta_1, \dots, \eta_s, \nu_1, \dots, \nu_k)$.

Remark 3.19 When we extend a sequence of generators $\langle \beta_1, \ldots, \beta_l \rangle$ to a sequence $\langle \beta'_1, \ldots, \beta'_s \rangle$ we will naturally identify the set $e(\xi, \eta_1, \ldots, \eta_l)$, with-

$$e'(\xi, \eta_1, \dots, \eta_s) = e(\xi, \eta_{i_1}, \dots, \eta_{i_l})$$

where i_j is the index for which $\beta'_{i_j} = \beta_j$, for every $1 \leq j \leq l$.

Similarly, whenever a function $g \in V$ is given, whose variables are $\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_k$, we abuse the notation and denote $g(\xi, \eta_1, \dots, \eta_s, \nu_1, \dots, \nu_k)$ to mean $g(\xi, \eta_{i_1}, \dots, \eta_{i_l}, \nu_1, \dots, \nu_k)$.

The proof of theorem 3.18 goes by generalizing the given sets $e(\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_k)$:

Definition 3.20 For every $\eta_1, \ldots, \eta_l < \kappa, 1 \le i \le k$ and an increasing sequence $\langle \xi, \nu_1, \ldots, \nu_i \rangle$, we define a set $e(\xi, \eta_1, \ldots, \eta_l, \nu_1, \ldots, \nu_i) \subseteq P \setminus \nu_i$.

For i=k this is the set $e\left(\xi,\eta_1,\ldots,\eta_l,\nu_1,\ldots,\nu_k\right)$ given in the formulation of the theorem. Assume that $1 \leq i < k$. Work by recursion. Assume that for every $\nu < g_{i+1}\left(\xi,\eta_1,\ldots,\eta_l,\nu_1,\ldots,\nu_i\right)$, the set $e\left(\xi,\eta_1,\ldots,\eta_l,\nu_1,\ldots,\nu_i,\nu_i\right)$ is defined. Denote $g_{i+1}=g_{i+1}\left(\xi,\eta_1,\ldots,\eta_l,\nu_1,\ldots,\nu_i\right)$. Let us define the set $e\left(\xi,\eta_1,\ldots,\eta_l,\nu_1,\ldots,\nu_i\right)$, as follows: A condition $q \in P \setminus \nu_i$ belongs to $e\left(\xi,\eta_1,\ldots,\eta_l,\nu_1,\ldots,\nu_i\right)$ if and only if the following properties hold:

1. (A technical requirement) $q \upharpoonright_{g_{i+1}}$ decides the statements-

$$F_{i+1}(\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_j) = W_{g_{i+1}} \cap V, \ t_{g_{i+1}}^q = t_{i+1}(\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_i)$$

Also, if $q \upharpoonright_{g_{i+1}}$ decides that $t^q_{g_{i+1}} \neq t_{i+1} (\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_i)$, it also decides whether one of the sequences is an initial segment of the other, and if so, which one it is. Finally, if it forces that $t^q_{g_{i+1}}$ is a strict initial segment of $t_{i+1} (\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_i)$, it also forces that $A^q_{g_{i+1}} \subseteq g_{i+1} \setminus \max(t_{i+1} (\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_i))$.

2. (The essential requirement) If both statements in the technical requirement are decided positively, there exists a sequence—

$$\langle q(\nu) : \nu < g_{i+1}(\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_i) \rangle$$

such that, for every $\nu < g_{i+1}(\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_i)$ above $\nu_i, q(\nu) \in P \setminus \nu$ extends $q \setminus \nu$, and—

$$q \Vdash \text{if } \underset{\alpha_{i+1}}{\underset{\alpha_{i+1}}{\sim}} (\xi) = \nu, \text{ then } q(\nu) \in G \setminus \nu \text{ and } q(\nu) \in e(\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_i, \nu)$$

Similarly, given $\langle \xi, \eta_1, \dots, \eta_l \rangle$, define $e(\xi, \eta_1, \dots, \eta_l)$ to be the set of conditions $q \in P \setminus \xi$ which decide whether $F_1(\xi, \eta_1, \dots, \eta_l) = W_{g_1(\xi, \eta_1, \dots, \eta_l)} \cap V$, $t_1(\xi, \eta_1, \dots, \eta_l) = t_{g_1(\xi, \eta_1, \dots, \eta_l)}^q$, and, assuming that it is decided positively, have a system of extensions—

$$\langle q(\nu) : \nu < g_1(\xi, \eta_1, \dots, \eta_l) \rangle$$

such that, for every $\nu < g_1(\xi, \eta_1, \dots, \eta_l), q(\nu) \in P \setminus \nu$, and—

$$q \Vdash \text{if } \underset{\sim}{\mu_{\alpha_1}}(\xi) = \nu \text{ then } q(\nu) \in G \setminus \nu \text{ and } q(\nu) \in e(\xi, \eta_1, \dots, \eta_l, \nu)$$

If it is decided negatively, then $q \upharpoonright_{g_1}$ knows how to compare $t_{g_1}^q$ and $t_1(\xi, \eta_1, \dots, \eta_l)$ as in the second point above.

By induction, we will argue that for every $i \leq k$ and $\xi, \eta_1, \ldots, \eta_l, \nu_1, \ldots, \nu_i$, the set $e(\xi, \eta_1, \ldots, \eta_l, \nu_1, \ldots, \nu_i) \subseteq P \setminus \nu_i$ is \leq^* -dense open above conditions $q \in P \setminus \nu_i$ for which—

$$q \Vdash \langle d(f_{\beta_{1}}(\xi)), \dots, d(f_{\beta_{l}}(\xi)), \underbrace{\mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{i}}(\xi)}_{\alpha_{1}} \rangle = \langle \eta_{1}, \dots, \eta_{l}, \nu_{1}, \dots, \nu_{i} \rangle, \text{ and for every } 1 \leq j \leq i, \ F_{j+1}(\xi, \eta_{1}, \dots, \eta_{l}, \nu_{1}, \dots, \nu_{j}) = \underbrace{W}_{g_{j+1}(\xi, \eta_{1}, \dots, \eta_{l}, \nu_{1}, \dots, \nu_{j})}_{g_{j+1}(\xi, \eta_{1}, \dots, \eta_{l}, \nu_{1}, \dots, \nu_{j})} \text{ and } t_{j+1}(\xi, \eta_{1}, \dots, \eta_{l}, \nu_{1}, \dots, \nu_{j}) = t_{g_{j+1}(\xi, \eta_{1}, \dots, \eta_{l}, \nu_{1}, \dots, \nu_{j})}^{q}$$

The induction will be inverse: The basis, for i = k, is true, as it is known that the set $e(\xi, \eta_1, \ldots, \eta_l, \nu_1, \ldots, \nu_k) \subseteq P \setminus \nu_k$ is \leq^* dense-open above conditions $q \in P \setminus \nu_k$ which force that-

$$\langle d(f_{\beta_1}(\xi)), \ldots, d(f_{\beta_l}(\xi)), \mu_{\alpha_1}(\xi), \ldots, \mu_{\alpha_k}(\xi) \rangle = \langle \eta_1, \ldots, \eta_l, \nu_1, \ldots, \nu_k \rangle$$

The inductive step is given in the following lemma:

Lemma 3.21 Fix $\eta_1, \ldots, \eta_l < \kappa$, $1 \leq i < k$ and an increasing sequence $\langle \xi, \nu_1, \ldots, \nu_i \rangle$. Denote $g_{i+1} = g_{i+1}(\xi, \eta_1, \ldots, \eta_l, \nu_1, \ldots, \nu_i)$. Assume that for every $\nu_{i+1} \in (\nu_i, g_{i+1})$, the set-

$$e(\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_i, \nu_{i+1}) \subseteq P \setminus \nu_{i+1}$$

is \leq^* -dense open above conditions $q \in P \setminus \nu_{i+1}$ for which-

$$q \Vdash \langle d(f_{\beta_{1}}(\xi)), \dots, d(f_{\beta_{l}}(\xi)), \underbrace{\mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{i}}(\xi), \underbrace{\mu_{\alpha_{i+1}}(\xi)}}_{every 1 \leq j \leq i+1, F_{j+1}(\xi, \eta_{1}, \dots, \eta_{l}, \nu_{1}, \dots, \nu_{j})} = \underbrace{W}_{g_{j+1}(\xi, \eta_{1}, \dots, \eta_{l}, \nu_{1}, \dots, \nu_{j})}_{g_{j+1}(\xi, \eta_{1}, \dots, \eta_{l}, \nu_{1}, \dots, \nu_{j})} and$$

$$t_{j+1}(\xi, \eta_{1}, \dots, \eta_{l}, \nu_{1}, \dots, \nu_{j}) = t_{g_{j+1}(\xi, \eta_{1}, \dots, \eta_{l}, \nu_{1}, \dots, \nu_{j})}^{q}$$

then $e(\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_i)$ is \leq^* -dense open above conditions $q \in P \setminus \nu_i$ for which-

$$q \Vdash \langle d(f_{\beta_{1}}(\xi)), \dots, d(f_{\beta_{l}}(\xi)), \underbrace{\mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{i}}(\xi)}_{\in \alpha_{1}} \rangle = \langle \eta_{1}, \dots, \eta_{l}, \nu_{1}, \dots, \nu_{i} \rangle, \text{ and for }$$

$$every \ 1 \leq j \leq i, \ F_{j+1}(\xi, \eta_{1}, \dots, \eta_{l}, \nu_{1}, \dots, \nu_{j}) = \underbrace{W}_{g_{j+1}(\xi, \eta_{1}, \dots, \eta_{l}, \nu_{1}, \dots, \nu_{j})}_{g_{j+1}(\xi, \eta_{1}, \dots, \eta_{l}, \nu_{1}, \dots, \nu_{j})} \text{ and }$$

$$t_{j+1}(\xi, \eta_{1}, \dots, \eta_{l}, \nu_{1}, \dots, \nu_{j}) = t_{g_{j+1}(\xi, \eta_{1}, \dots, \eta_{l}, \nu_{1}, \dots, \nu_{i})}^{q}$$

Proof. Let $q \in P \setminus \nu_i$ be a condition which forces that—

$$d(f_{\beta_{1}}(\xi)), \dots, d(f_{\beta_{l}}(\xi)), \underset{\sim}{\mu_{1}}(\xi), \dots, \underset{\sim}{\mu_{i}}(\xi) \rangle = \langle \eta_{1}, \dots, \eta_{l}, \nu_{1}, \dots, \nu_{i} \rangle$$
and for every $1 \leq j \leq i$, $F_{j+1}(\xi, \eta_{1}, \dots, \eta_{l}, \nu_{1}, \dots, \nu_{j}) = \underset{\sim}{W}_{g_{j+1}(\xi, \eta_{1}, \dots, \eta_{l}, \nu_{1}, \dots, \nu_{j})}$
and $t_{j+1}(\xi, \eta_{1}, \dots, \eta_{l}, \nu_{1}, \dots, \nu_{j}) = t_{g_{j+1}(\xi, \eta_{1}, \dots, \eta_{l}, \nu_{1}, \dots, \nu_{j})}^{q}$

Denote-

$$g = g_{i+1} (\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_i)$$
$$U_g = F_{i+1} (\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_i)$$
$$t = t_{i+1} (\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_i)$$

Assume that $q \upharpoonright_q$ forces that—

$$W_g \cap V = U_g, \ t = t_g^q$$

(if not, we are done since $q \in e(\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_l)$). Denote n = lh(t). We will now apply the following claim:

Claim 7 Assume that $p \in G$ is a condition, $n < \omega$ and $g \in \Delta$ is measurable in V. Assume that U_g is a normal measure on g in V, t is a finite sequence below g of length n, and—

$$p \Vdash \underset{\sim}{t}_g^q = t, \ \underset{\sim}{W}_g \cap V = U_g$$

For every $\nu < g$, assume that $e(\nu) \subseteq P \setminus \nu$ is a P_{ν} -name for a subset of $P \setminus \nu$, which is \leq^* dense-open above conditions which force that ν is the (n+1)-th element in the Prikry sequence of g. Then there exists a direct extension $p^* \geq^* p$ and a sequence $\langle p(\nu) : \nu < g \rangle$, such that, for every $\nu < g$,

Proof. For every $\nu < g$, consider the set-

$$d(\nu) = \{ r \in P \upharpoonright_{[\nu,g)} : r \parallel \nu \in A_g^p, \text{ and if } r \Vdash \nu \in A_g^p \text{ then}$$
$$r \Vdash \exists s \geq^* \langle t ^\frown \langle \nu \rangle, A_g^p \setminus \nu \rangle ^\frown p \setminus (g+1), \ r ^\frown s \in e(\nu) \}$$

Then $d(\nu) \subseteq P \upharpoonright_{[\nu,g)}$ is \leq^* -dense open above $p \upharpoonright_{[\nu,g)}$. Let H_g be the P_g -name, forced by $p \upharpoonright_g$, to be the \leq^* -generic subset of $j_{U_g}(P_g) \setminus g$, for which—

$$W_g = (U_g)_{\mathcal{H}_g}$$

(such a generic exists since W_g is simply generated). Let $q \in \text{Ult}(V, U_g)$ be a P_g -name, forced by p to be a condition in $[\nu \mapsto d(\nu)]_{U_g} \cap \underset{\sim}{\mathcal{H}}_g$. Let $\nu \mapsto q(\nu) \in P \upharpoonright_{[\nu,g)}$ be a function in V such that $[\nu \mapsto q(\nu)]_{U_g} = q$. Then we can assume that for a set of ν -s in U_g ,

$$(3) p \upharpoonright_{\nu} \Vdash q(\nu) \in d(\nu)$$

and, by lemma 2.17, $p \upharpoonright_g$ forces that there exists a set $C \in W_g$, such that for every $\nu \in C$,

$$p\upharpoonright_{\nu} \widehat{\ } q(\nu) \in \mathfrak{S} \upharpoonright_g$$

By shrinking C if necessary, we can assume that every $\nu \in C$ also satisfies equation (3). Now let us define the extension $p^* \geq^* p$, and, for every $\nu < g$, the condition $p(\nu) \in P \setminus \nu$. First, set—

$$p^* \upharpoonright_q = p \upharpoonright_q$$

and, in $V^{P \upharpoonright_{\nu}}$, set-

$$p(\nu) \upharpoonright_g = q(\nu)$$

Work in an arbitrary generic extension for $P \upharpoonright_g$, where $p^* \upharpoonright_g$ belongs. For every $\nu \in C \cap A_g^p$ (which thus satisfies $p \upharpoonright_{\nu} \widehat{\ } q(\nu) \in G \upharpoonright_g$), there exists $s(\nu) \in P \setminus g$, $s(\nu) \geq^* \langle t \widehat{\ } \langle \nu \rangle, \underset{g}{\mathcal{A}_g^p} \setminus \nu \rangle \widehat{\ } q \setminus (g+1)$, such that $p(\nu) \upharpoonright_g \widehat{\ } s(\nu) \in e(\nu)$. Set-

$$p^*\left(g\right) = \left\langle \underset{\sim}{t_g}^p, \underset{\sim}{A_g}^p \cap C \cap \left(\triangle_{\nu < g, \nu \in C \cap A_g}^p \underset{\sim}{A_g}^{s(\nu)}\right)\right\rangle$$

(the definition above is carried in $V[G \upharpoonright_g]$, so C is available there).

Let $p^* \setminus (g+1) = s(\underline{\nu})$, where $\underline{\nu}$ is the (n+1)-th element in the Prikry sequence of g. Finally, let-

$$p(\nu) \setminus g = \langle t \widehat{\ } \langle \nu \rangle, A_q^{p^*} \setminus \nu \rangle \widehat{\ } p^* \setminus (g+1)$$

where the above definition is possible if $p \upharpoonright_{\nu} \widehat{} p(\nu) \upharpoonright_{g} \Vdash \nu \in A_{g}^{p^{*}}$; if not, let $p(\nu) \setminus g$ be arbitrary.

This completes the definition of $q^* \geq^* q$ and $\langle p(\nu) : \nu < g \rangle$. Let us prove that for every $\nu < g$,

Fix $\nu < g$ and let G be a generic set for P which includes p^* , such that, in V[G], ν appears after t in the Prikry sequence of g. In particular, $\nu \in C$ and thus $q(\nu) \in G \upharpoonright_{[\nu,g)}$. By the definition of $p(\nu)$, and since $p^* \in G$, $q(\nu) \in G \upharpoonright_{[\nu,g)}$, it follows that $p(\nu) \in G \backslash \nu$, as desired.

 \square of claim 7.

Apply claim 7 with respect to the set $e(\xi, \eta_1, \ldots, \eta_l, \nu_1, \ldots, \nu_i, \nu) \subseteq P \setminus \nu$ (recall that $\xi, \eta_1, \ldots, \eta_l, \nu_1, \ldots, \nu_i$ are fixed), and direct extend q further, to a condition $q^* \geq^* q$, which has a system of extensions—

$$\langle q(\nu) : \nu < g \rangle$$

as in the statement if the lemma.

It follows that, for every $\nu < g$,

$$q^* \Vdash \text{if } \mu_{\alpha_{i+1}}(\xi) = \nu \text{ then } q(\nu) \in G \setminus \nu_i \text{ and } q(\nu) \setminus \nu \in e(\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_i, \nu)$$

Therefore $\langle q(\nu) : \nu < g \rangle$ witnesses the fact that $q^* \in e(\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_k)$. \square of lemma 3.21.

We now proceed towards the proof of theorem 3.18. We use the same notations as in the formulation of the theorem.

By induction, the following holds: For every $\xi, \eta_1, \dots, \eta_l$, the set $e(\xi, \eta_1, \dots, \eta_l) \subseteq P \setminus \xi$ is \leq^* dense open above conditions $q \in P \setminus \xi$ which force that—

$$\langle d(f_{\beta_1}(\xi)), \dots, d(f_{\beta_l}(\xi)) \rangle = \langle \eta_1, \dots, \eta_l \rangle$$

and that—

$$F_1(\xi, \eta_1, \dots, \eta_l) = \underset{g_1(\xi, \eta_1, \dots, \eta_l)}{W} \text{ and } t_1(\xi, \eta_1, \dots, \eta_l) = t_{g_1(\xi, \eta_1, \dots, \eta_l)}^q$$

We would like to perform another step, and move from conditions in $P \setminus \xi$ to conditions in P. This might require extending the sequence generators β_1, \ldots, β_l . We do this in the following lemma, which concludes the proof of theorem 3.18.

Lemma 3.22 There exists $s < \omega$, a sequence of generators $\langle \beta'_1, \ldots, \beta'_s \rangle$ of i which extends $\langle \beta_1, \ldots, \beta_l \rangle$, and a system of conditions—

$$\langle p(\xi, \eta'_1, \dots, \eta'_s, \nu_1, \dots, \nu_k) : \eta'_1, \dots, \eta'_s < \kappa, \quad \xi < \nu_1 < \dots < \nu_k \rangle$$

(all of them extend the condition $p \in G$ given in the statement of theorem 3.18), such that,

$$\{\xi < \kappa \colon p\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{k}}(\xi)\right) \upharpoonright_{\mu_{\alpha_{k}}(\xi)} \vdash p\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{k}}(\xi)\right) \backslash \mu_{\alpha_{k}}(\xi) \in e\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{k}}(\xi)\right) \text{ and} - p\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{k}}(\xi)\right) \in G\}$$

Proof. Recall that $W = U_H$ is generated from the elementary embedding $i: V \to N$. Let us consider the set-

$$i(\langle \xi, \eta_1, \dots, \eta_l \rangle \mapsto e(\xi, \eta_1, \dots, \eta_l))(\kappa, \beta_1, \dots, \beta_l) \subseteq i(P) \setminus \kappa$$

it is \leq^* -dense open in $i(P) \setminus \kappa$, and thus meets a condition $r \in H$. Since $r \in N$, it can be represented using a sequence of generators $\langle \beta'_1, \ldots, \beta'_s \rangle$, on which we can assume that it contains $\langle \beta_1, \ldots, \beta_l \rangle$. Let—

$$\langle \xi, \eta'_1, \dots, \eta'_s \rangle \mapsto r(\xi, \eta'_1, \dots, \eta'_s) \in P \setminus \xi$$

be a function in V, such that—

$$r = i\left(\langle \xi, \eta'_1, \dots, \eta'_s \rangle \mapsto r\left(\xi, \eta'_1, \dots, \eta'_s\right)\right) \left(\kappa, \beta'_1, \dots, \beta'_s\right)$$

Now, for every $\langle \xi, \eta'_1, \dots, \eta'_s, \nu_1, \dots, \nu_k \rangle$, let us define the condition $p(\xi, \eta'_1, \dots, \eta'_s, \nu_1, \dots, \nu_k) \in P$. We do this recursively, and define, for every $1 \le i \le k$, a condition $p(\xi, \eta'_1, \dots, \eta'_s, \nu_1, \dots, \nu_i) \in P$. Simultaneously, we prove that—

$$\{\xi < \kappa \colon p\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{i}}(\xi)\right) \upharpoonright_{\mu_{\alpha_{i}}(\xi)} \vdash p\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{i}}(\xi)\right) \setminus \mu_{\alpha_{i}}(\xi) \in e\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{i}}(\xi)\right) \text{ and-} p\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{i}}(\xi)\right) \in G\}$$

This will complete the proof of the lemma, and thus, the proof of theorem 3.18.

• First, fix $\xi, \eta_1, \ldots, \eta_s$, and let us define $p(\xi, \eta_1, \ldots, \eta_s)$. If $p \upharpoonright_{\xi} \vdash r(\xi, \eta_1, \ldots, \eta_s) \in e(\xi, \eta_1, \ldots, \eta_l)$, set $p(\xi, \eta_1, \ldots, \eta_s) = p \upharpoonright_{\xi} r(\xi, \eta_1, \ldots, \eta_s)$. Else, let $p(\xi, \eta_1, \ldots, \eta_s)$ be an arbitrary condition above p. We argue that—

$$\{\xi < \kappa \colon p \upharpoonright_{\xi} \Vdash r\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right)\right) \in e\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right)\right) \text{ and } p\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right)\right) \in G\} \in W$$

Recall that $r \in H$ was defined such that—

$$p \Vdash r \in i(\langle \xi, \eta_1, \dots, \eta_l \rangle \mapsto e(\xi, \eta_1, \dots, \eta_l))(\kappa, \beta_1, \dots, \beta_l)$$

applying the embedding $k \colon N \to M$ and reflecting down modulo W gives—

$$\{\xi < \kappa \colon p \upharpoonright_{\xi} \Vdash r\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right)\right) \in e\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right)\right)\} \in W$$

Finally, $p \Vdash r \in H$ and thus $p \Vdash k(r) \in j_W(G)$, by lemma 2.17. Reflecting this down gives—

$$\{\xi < \kappa \colon p\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{2}}(\xi)\right)\right) \in G\} \in W$$

• Fix $\xi, \eta'_1, \ldots, \eta'_s, \nu_1$ and let us define $p(\xi, \eta'_1, \ldots, \eta'_s, \nu_1)$. Denote $g_1 = g_1(\xi, \eta'_1, \ldots, \eta'_s)$. If $p(\xi, \eta'_1, \ldots, \eta'_s) \upharpoonright_{\xi} \vdash p(\xi, \eta'_1, \ldots, \eta'_s) \backslash \xi \in e(\xi, \eta'_1, \ldots, \eta'_s)$, then $p(\xi, \eta'_1, \ldots, \eta'_s) \upharpoonright_{\xi} = p \upharpoonright_{\xi}$ decides the statements—

$$F_1(\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_j) = W_{g_1} \cap V , t_{g_1}^q = t_1(\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_i)$$

and, if it decides them positively, it forces that there exists a sequence $\langle q(\nu) \colon \nu < g_1 \rangle$ witnessing this. Define–

$$p(\xi, \eta_1', \dots, \eta_s', \nu_1) = p(\xi, \eta_1', \dots, \eta_s') \upharpoonright_{\nu_1} \widehat{q}(\nu_1)$$

If $p(\xi, \eta_1', \dots, \eta_s') \upharpoonright_{\xi} \nvDash p(\xi, \eta_1', \dots, \eta_s') \setminus \xi \in e(\xi, \eta_1', \dots, \eta_s')$, or $p(\xi, \eta_1', \dots, \eta_s') \upharpoonright_{\xi} \vdash p(\xi, \eta_1', \dots, \eta_s') \setminus \xi \in e(\xi, \eta_1', \dots, \eta_s')$ but the statements—

$$F_1(\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_j) = \underset{\sim}{W}_{g_1} \cap V , t_{g_1}^q = t_1(\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_i)$$

are decided negatively, let $p(\xi, \eta'_1, \dots, \eta'_s, \nu_1)$ be an arbitrary condition above $p(\xi, \eta'_1, \dots, \eta'_s)$. We argue that—

$$\{\xi < \kappa \colon p\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right), \mu_{\alpha_{1}}(\xi)\right) \upharpoonright_{\mu_{\alpha_{1}}(\xi)} \vdash p\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right), \mu_{\alpha_{1}}(\xi)\right) \setminus \mu_{\alpha_{1}}(\xi) \in e\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right), \mu_{\alpha_{1}}(\xi)\right) \text{ and-} p\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right), \mu_{\alpha_{1}}(\xi)\right) \in G\}$$

First, by the previous point,

$$\{\xi < \kappa \colon p\left(\xi, d\left(f_{\beta_1'}(\xi)\right), \dots, d\left(f_{\beta_s'}(\xi)\right)\right) \upharpoonright_{\xi} \vdash p\left(\xi, d\left(f_{\beta_1'}(\xi)\right), \dots, d\left(f_{\beta_s'}(\xi)\right)\right) \setminus \xi \in e\left(\xi, d\left(f_{\beta_1'}(\xi)\right), \dots, d\left(f_{\beta_s'}(\xi)\right)\right)\} \in W$$

By the properties of the set $e\left(\xi, d\left(f_{\beta_1'}(\xi)\right), \ldots, d\left(f_{\beta_s'}(\xi)\right)\right)$, the condition—

$$p\left(\xi, d\left(f_{\beta_1'}(\xi)\right), \dots, d\left(f_{\beta_s'}(\xi)\right)\right) \upharpoonright_{\xi}$$

decides the statements-

$$F_1\left(\xi, d\left(f_{\beta_1'}(\xi)\right), \dots, d\left(f_{\beta_s'}(\xi)\right)\right) = \underset{\sim}{W}_{g_1} \cap V$$

and-

$$t_{g_1}^{p\left(\xi,d\left(f_{\beta_1'}(\xi)\right),\ldots,d\left(f_{\beta_s'}(\xi)\right)\right)} = t_1\left(\xi,d\left(f_{\beta_1'}(\xi)\right),\ldots,d\left(f_{\beta_s'}(\xi)\right)\right)$$

Claim 8 For a set of ξ -s in W, the above statements are decided in a positive way. Before the proof of the claim, let us proceed with our argument. By the claim and definition 3.20,

$$p\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right), \mu_{\alpha_{1}}(\xi)\right) = p\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right)\right) \upharpoonright_{\mu_{\alpha_{1}}(\xi)} q\left(\mu_{\alpha_{1}}(\xi)\right)$$
and, by the properties of the set $e\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right)\right)$, the condition—
$$p\left(\xi, d\left(f_{\beta_{s}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right)\right)$$

forces that-

$$p\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right), \mu_{\alpha_{1}}(\xi)\right) = p\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right)\right) \upharpoonright_{\mu_{\alpha_{1}}(\xi)} q\left(\mu_{\alpha_{1}}(\xi)\right) \in \mathcal{Q}$$
and—

$$p\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right), \mu_{\alpha_{1}}(\xi)\right) \setminus \mu_{\alpha_{1}}(\xi) = q\left(\mu_{\alpha_{1}}(\xi)\right) \in e\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right), \mu_{\alpha_{1}}(\xi)\right)$$

Thus, for a set of ξ -s in W,

$$\{\xi < \kappa \colon p\left(\xi, d\left(f_{\beta_1'}(\xi)\right), \dots, d\left(f_{\beta_s'}(\xi)\right)\right) \upharpoonright_{\xi} \vdash p\left(\xi, d\left(f_{\beta_1'}(\xi)\right), \dots, d\left(f_{\beta_s'}(\xi)\right)\right) \setminus \xi \in e\left(\xi, d\left(f_{\beta_1'}(\xi)\right), \dots, d\left(f_{\beta_s'}(\xi)\right)\right)\} \in W$$

Which finishes the second step. Thus, it remains to prove claim 8:

Proof. Let us prove first that—

$$\left\{\xi < \kappa \colon p\left(\xi, d\left(f_{\beta_1'}(\xi)\right), \dots, d\left(f_{\beta_s'}(\xi)\right)\right) \upharpoonright_{\xi} \vdash F_1\left(\xi, d\left(f_{\beta_1'}(\xi)\right), \dots, d\left(f_{\beta_s'}(\xi)\right)\right) = \underset{\sim}{W}_{g_1} \cap V\right\}$$

Assume otherwise. Then in $M[j_W(G)]$,

$$j_{W}\left(\langle \xi, \eta_{1}, \dots, \eta_{s} \rangle \mapsto F_{1}\left(\langle \xi, \eta_{1}, \dots, \eta_{s} \rangle\right)\right) \left(\kappa, j_{0,\alpha}\left(\beta'_{1}\right), \dots, j_{0,\alpha}\left(\beta'_{s}\right)\right) \neq \left[\xi \mapsto W_{g_{1}\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right)\right)} \cap V\right]_{W}$$

but both sides are equal to $k_1(U_{\mu_{\alpha_1}})$, contradicting property (D) of the embedding k_{α_1} .

Now let us prove that-

$$\{\xi < \kappa \colon p\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right)\right) \upharpoonright_{\xi} \Vdash t_{g_{1}}^{p\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right)\right)} = t_{1}\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right)\right)\}$$

Assume otherwise. Then the condition $s = j_W \left(\xi \mapsto p \left(\xi, d \left(f_{\beta_1'}(\xi) \right), \dots, d \left(f_{\beta_s'}(\xi) \right) \right) \right) (\kappa)$ forces that—

$$t_{k_{\alpha_1}(\mu_{\alpha_1})}^s \neq k_{\alpha_1}(t_{\alpha_1}) = t_{\alpha_1}$$

Note that $s \in j_W(G) \upharpoonright_{k_{\alpha_1}(\mu_{\alpha_1})}$ and t_{α_1} is the initial segment of the Prikry sequence of $k_{\alpha_1}(\mu_{\alpha_1})$ below μ_{α_1} in $M[j_W(G)]$. Thus, one of the sequences $t^s_{k_{\alpha_1}(\mu_{\alpha_1})}$ and t_{α_1} is a strict initial segment of the other. By the second requirement in definition 3.20, $s \upharpoonright_{k_{\alpha_1}(\mu_{\alpha_1})}$ decides which one is an initial segment of the other. Now this yields a contradiction:

1. If t_{α_1} is a strict initial segment of $t_{k_{\alpha_1}(\mu_{\alpha_1})}^s$: Recall that $s = k_{\alpha_1}(s')$, where-

$$s' = j_{\alpha_1} \left(\langle \xi, \eta_1, \dots, \eta_s \rangle \mapsto p\left(\xi, \eta_1, \dots, \eta_s \right) \right) \left(\kappa, j_{0,\alpha_1}(\beta_1'), \dots, j_{0,\alpha_1}(\beta_s') \right)$$

Then $s' \upharpoonright_{\mu_{\alpha_1}}$ forces that t_{α_1} is a strict initial segment of $t_{\mu_{\alpha_1}}^{s'}$. Work over M_{α_1} . Let $\gamma < \mu_{\alpha_1}$ be an ordinal, forced by $s' \upharpoonright_{\mu_{\alpha_1}}$ to be a bound on the first ordinal in $t_{\mu_{\alpha_1}}^{s'} \setminus t_{\alpha_1}$ (such a bound exists since the forcing $j_{\alpha_1}(P) \upharpoonright_{\mu_{\alpha_1}}$ is μ_{α_1} -c.c. in M_{α_1}). Applying $k_{\alpha_1} \colon M_{\alpha_1} \to M$, $\gamma < \mu_{\alpha_1}$ is an upper bound on the first ordinal in $t_{k_{\alpha_1}(\mu_{\alpha_1})}^s \setminus t_{\alpha_1}$. However, in $M[j_W(G)]$, this element is μ_{α_1} itself, which is strictly above γ . A contradiction.

2. Else, $t_{k_{\alpha_1}(\mu_{\alpha_1})}^s$ is a strict initial segment of t_{α_1} : Denote $\gamma = \max(t_{\alpha_1})$. Then, by definition 3.20, s forces that the initial segment of the Prikry sequence of $k_{\alpha_1}(\mu_{\alpha_1})$ is $t_{k_{\alpha_1}(\mu_{\alpha_1})}^s$, followed by an element strictly above γ ; in particular, t_{α_1} is not an initial segment of the Prikry sequence of $k_{\alpha_1}(\mu_{\alpha_1})$ in $M[j_W(G)]$, which is a contradiction.

 \square of claim 8.

• Assume now that $1 \leq i < k$ is arbitrary, and for every $\xi, \eta'_1, \ldots, \eta'_s, \nu_1, \ldots, \nu_i$, a condition $p(\xi, \eta'_1, \ldots, \eta'_s, \nu_1, \ldots, \nu_i)$ is defined. Denote $g_{i+1} = g_{i+1}(\xi, \eta'_1, \ldots, \eta'_s, \nu_1, \ldots, \nu_i)$. For every $\nu_{i+1} < g_{i+1}$, let us define the condition $p(\xi, \eta'_1, \ldots, \eta'_s, \nu_1, \ldots, \nu_i, \nu_{i+1})$. If $p(\xi, \eta'_1, \ldots, \eta'_s, \nu_1, \ldots, \nu_i) \upharpoonright \nu_i \vdash p(\xi, \eta'_1, \ldots, \eta'_s, \nu_1, \ldots, \nu_i) \upharpoonright \nu_i \in e(\xi, \eta'_1, \ldots, \eta'_s, \nu_1, \ldots, \nu_i)$ and $p(\xi, \eta'_1, \ldots, \eta'_s, \nu_1, \ldots, \nu_i) \upharpoonright \nu_i$ forces the statements—

$$F_{i+1}(\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_i) = \underset{\sim}{W}_{g_{i+1}} \cap V , \ t_{g_{i+1}}^q = t_{i+1}(\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_i)$$

then $p(\xi, \eta'_1, \ldots, \eta'_s, \nu_1, \ldots, \nu_i) \upharpoonright_{\nu_i}$ forces that there exists a sequence $\langle q(\nu) : \nu < g_{i+1} \rangle$ witnessing this. In this case, define—

$$p(\xi, \eta'_1, \dots, \eta'_s, \nu_1, \dots, \nu_i, \nu_{i+1}) = p(\xi, \eta'_1, \dots, \eta'_s, \nu_1, \dots, \nu_i) \upharpoonright_{\nu_{i+1}} q(\nu_{i+1})$$

Else, let $p(\xi, \eta'_1, \ldots, \eta'_s, \nu_1, \ldots, \nu_i, \nu_{i+1})$ be an arbitrary condition which extends the condition $p(\xi, \eta'_1, \ldots, \eta'_s, \nu_1, \ldots, \nu_i)$.

Let us argue now that-

$$\{\xi < \kappa \colon p\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{i}}(\xi), \mu_{\alpha_{i+1}}(\xi)\right) \upharpoonright_{\mu_{\alpha_{i+1}}(\xi)} \vdash p\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{i}}(\xi), \mu_{\alpha_{i+1}}(\xi)\right) \setminus \mu_{\alpha_{i+1}}(\xi) \in e\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{i}}(\xi), \mu_{\alpha_{i+1}}(\xi)\right) \text{ and-} p\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{i}}(\xi), \mu_{\alpha_{i+1}}(\xi)\right) \in G\}$$

We do this as in the previous point. First,

$$\{\xi < \kappa \colon p\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{i}}(\xi)\right) \upharpoonright_{\mu_{\alpha_{i}}(\xi)} \vdash p\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{i}}(\xi)\right) \setminus \mu_{\alpha_{i}}(\xi) \in e\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{i}}(\xi)\right)\} \in W$$

Thus, for a set of ξ -s in W, the condition—

$$p\left(\xi, d\left(f_{\beta_1'}(\xi)\right), \dots, d\left(f_{\beta_s'}(\xi)\right), \mu_{\alpha_1}(\xi), \dots, \mu_{\alpha_i}(\xi)\right) \upharpoonright_{\mu_{\alpha_i}(\xi)}$$

decides the statements-

$$F_{i+1}\left(\xi, d\left(f_{\beta_1'}(\xi)\right), \dots, d\left(f_{\beta_s'}(\xi)\right), \mu_{\alpha_1}(\xi), \dots, \mu_{\alpha_i}(\xi)\right) = W_{g_{i+1}\left(\xi, d\left(f_{\beta_s'}(\xi)\right), \dots, d\left(f_{\beta_s'}(\xi)\right), \mu_{\alpha_1}(\xi), \dots, \mu_{\alpha_i}(\xi)\right)} \cap V$$

and-

$$t_{g_{i+1}\left(\xi,d\left(f_{\beta'_{1}}(\xi)\right),\dots,d\left(f_{\beta'_{s}}(\xi)\right),\mu_{\alpha_{1}}(\xi),\dots,\mu_{\alpha_{i}}(\xi)\right)}^{p\left(\xi,d\left(f_{\beta'_{1}}(\xi)\right),\dots,d\left(f_{\beta'_{s}}(\xi)\right),\mu_{\alpha_{1}}(\xi),\dots,\mu_{\alpha_{i}}(\xi)\right)} = t_{i+1}\left(\xi,d\left(f_{\beta'_{1}}(\xi)\right),\dots,d\left(f_{\beta'_{s}}(\xi)\right),\mu_{\alpha_{1}}(\xi),\dots,\mu_{\alpha_{i}}(\xi)\right)$$

arguing as in claim 8, both statements are decided positively for a set of ξ -s in W. Thus,

$$p\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{i}}(\xi), \mu_{\alpha_{i+1}}(\xi)\right) = p\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{i}}(\xi)\right) \upharpoonright_{\mu_{\alpha_{i+1}}(\xi)} q\left(\mu_{\alpha_{i+1}}(\xi)\right)$$

and the condition $q\left(\mu_{\alpha_{i+1}}(\xi)\right)$ is forced, by—

$$p\left(\xi, d\left(f_{\beta_1'}(\xi)\right), \dots, d\left(f_{\beta_s'}(\xi)\right), \mu_{\alpha_1}(\xi), \dots, \mu_{\alpha_i}(\xi)\right)$$

to be in-

$$G \setminus \mu_{\alpha_{i+1}}(\xi) \cap e\left(\xi, d\left(f_{\beta_1'}(\xi)\right), \dots, d\left(f_{\beta_s'}(\xi)\right), \mu_{\alpha_1}(\xi), \dots, \mu_{\alpha_i}(\xi), \mu_{\alpha_{i+1}}(\xi)\right)$$

Therefore,

$$\{\xi < \kappa \colon p\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{i}}(\xi), \mu_{\alpha_{i+1}}(\xi)\right) \upharpoonright_{\mu_{\alpha_{i+1}}(\xi)} \vdash p\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{i}}(\xi), \mu_{\alpha_{i+1}}(\xi)\right) \setminus \mu_{\alpha_{i+1}}(\xi) \in e\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{i}}(\xi), \mu_{\alpha_{i+1}}(\xi)\right) \text{ and-} p\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{i}}(\xi), \mu_{\alpha_{i+1}}(\xi)\right) \in G\}$$

as desired.

 \square of lemma 3.22. \square of theorem 3.18.

3.5 Properties of k_{α}

In this subsection we complete the proof of properties (A) - (D) of k_{α} . After that, we will prove in lemma 3.26 that $k_{\kappa^*} : M_{\kappa^*} \to M$ is the identity, and conclude the proof of theorems 3.13 and 3.12.

Lemma 3.23 $\mu_{\alpha} = crit(k_{\alpha})$ is measurable in M_{α} . Moreover, μ_{α} is the least measurable above $sup\{\mu_{\beta} : \beta < \alpha\}$ which has cofinality above κ in V.

Proof. Write $\mu = [f]_W$ and $\mu = j_{\alpha}(h)(\kappa, j_{0,\alpha}(\beta_1), \dots, j_{0,\alpha}(\beta_k), \mu_{\alpha_1}, \dots, \mu_{\alpha_m})$, for some $f \in V[G], h \in V, \beta_1, \dots, \beta_l$ generators of i and $\alpha_1 < \dots < \alpha_k < \alpha$.

Since $\mu < k_{\alpha}(\mu)$, we can assume that for every $\xi < \kappa$,

$$f(\xi) < h(\xi, d(f_{\beta_1}(\xi)), \dots, d(f_{\beta_l}(\xi)), \mu_{\alpha_1}(\xi), \dots, \mu_{\alpha_k}(\xi))$$

and let $p \in G$ be a condition which forces this. Given $\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_k$, consider the set-

$$e(\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_k) = \{r \in P \setminus \nu_k : \text{ for some bounded subset } A \subseteq h(\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_k), r \Vdash f(\xi) \in A\}$$

Then $e(\xi, \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_k)$ is \leq^* -dense open above conditions which extend p and force that—

$$\langle d(f_{\beta_1}(\xi)), \dots, d(f_{\beta_l}(\xi)), \mu_{\alpha_1}(\xi), \dots, \mu_{\alpha_k}(\xi) \rangle = \langle \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_k \rangle$$

By Theorem 3.18, the sequence $\langle \beta_1, \ldots, \beta_l \rangle$ can be extended to a sequence $\langle \beta'_1, \ldots, \beta'_s \rangle$, and p can be extended to a system of conditions,

$$\langle p(\xi, \eta_1, \dots, \eta_s, \nu_1, \dots, \nu_k) : \xi, \eta_1, \dots, \eta_s < \kappa, \nu_1 < \dots < \nu_k < \kappa \rangle$$

such that, for a set of ξ -s in W,

$$p\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{k}}(\xi)\right) \upharpoonright_{\mu_{\alpha_{k}}(\xi)} \vdash p\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{k}}(\xi)\right) \setminus \mu_{\alpha_{k}}(\xi) \in e\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{k}}(\xi)\right)$$

and-

$$p\left(\xi, d\left(f_{\beta_1'}(\xi)\right), \dots, d\left(f_{\beta_s'}(\xi)\right), \mu_{\alpha_1}(\xi), \dots, \mu_{\alpha_k}(\xi)\right) \in G$$

Assume now that $\langle \xi, \eta_1, \dots, \eta_s, \nu_1, \dots, \nu_k \rangle$ are given, such that—

$$p(\xi, \eta_1, \dots, \eta_s, \nu_1, \dots, \nu_k) \upharpoonright_{\nu_k} \vdash p(\xi, \eta_1, \dots, \eta_s, \nu_1, \dots, \nu_k) \setminus \nu_k \in e(\xi, \eta_1, \dots, \eta_s, \nu_1, \dots, \nu_k)$$

Let $\underset{\sim}{\mathcal{A}}$ be a P_{ν_k} -name, forced by $p(\xi, \eta_1, \dots, \eta_s, \nu_1, \dots, \nu_k) \upharpoonright_{\nu_k}$ to be a witness to the fact that $p(\xi, \vec{\eta}, \vec{\nu}) \setminus \nu_k \in e(\xi, \vec{\eta}, \vec{\nu})$. Namely it is a bounded subset of $h(\xi, \vec{\eta}, \vec{\nu})$, and $p(\xi, \vec{\eta}, \vec{\nu}) \setminus \nu_k \Vdash f(\xi) \in \underset{\sim}{\mathcal{A}}$.

Let $A(\xi, \vec{\eta}, \vec{\nu})$ be the set of ordinals $\gamma < h(\xi, \vec{\eta}, \vec{\nu})$ such that, some $r \geq p(\xi, \vec{\eta}, \vec{\nu}) \upharpoonright_{\nu_k}$ forces that $\gamma \in A$. Since $\nu_k < h(\xi, \vec{\eta}, \vec{\nu})$, $A(\xi, \vec{\eta}, \vec{\nu})$ is a bounded subset of $h(\xi, \vec{\eta}, \vec{\nu})$. The function $\langle \xi, \vec{\eta}, \vec{\nu} \rangle \mapsto A(\xi, \vec{\eta}, \vec{\nu})$ lies in V.

By the results of theorem 3.18, there exists a set of ξ -s in W for which—

$$G \ni p\left(\xi, d\left(f_{\beta_1'}(\xi)\right), \dots, d\left(f_{\beta_s'}(\xi)\right), \mu_{\alpha_1}(\xi), \dots, \mu_{\alpha_k}(\xi)\right) \Vdash$$
$$f(\xi) \in A\left(\xi, d\left(f_{\beta_1'}(\xi)\right), \dots, d\left(f_{\beta_s'}(\xi)\right), \mu_{\alpha_1}(\xi), \dots, \mu_{\alpha_k}(\xi)\right)$$

Thus, in $M[j_W(G)]$,

$$[f]_{W} \in \left[\xi \mapsto A\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{k}}(\xi)\right)\right]_{W} = k_{\alpha}\left(j_{\alpha}\left(\langle \xi, \vec{\eta}, \vec{\nu} \rangle \mapsto A\left(\xi, \vec{\eta}, \vec{\nu}\right)\right) \left(\kappa, j_{0,\alpha}\left(\beta'_{1}\right), \dots, j_{0,\alpha}\left(\beta'_{s}\right), \mu_{\alpha_{1}}, \dots, \mu_{\alpha_{k}}\right)\right) \subseteq \operatorname{Im}\left(k_{\alpha}\right)$$

where the last inclusion follows since-

$$j_{\alpha}(\langle \xi, \vec{\eta}, \vec{\nu} \rangle \mapsto A(\xi, \vec{\eta}, \vec{\nu}))(\kappa, j_{0,\alpha}(\beta'_1), \dots, j_{0,\alpha}(\beta'_s), \mu_{\alpha_1}, \dots, \mu_{\alpha_k})$$

is a bounded subset of-

$$\mu_{\alpha} = j_{\alpha} \left(\left\langle \xi, \vec{\eta}, \vec{\nu} \right\rangle \mapsto h\left(\xi, \vec{\eta}, \vec{\nu} \right) \right) \left(\kappa, j_{0,\alpha} \left(\beta_{1}^{\prime} \right), \dots, j_{0,\alpha} \left(\beta_{s}^{\prime} \right), \mu_{\alpha_{1}}, \dots, \mu_{\alpha_{k}} \right)$$

which is crit (k_{α}) .

Thus we proved that $\mu_{\alpha} \in \text{Im}(k_{\alpha})$, which is a contradiction. \square

Lemma 3.24 μ_{α} appears in the Prikry sequence added to $k_{\alpha}(\mu_{\alpha})$ in $M[j_W(G)]$.

Proof. In M[H], denote by t^* the initial segment of the Prikry sequence of $k_{\alpha}(\mu_{\alpha})$ which consists of all the ordinals below μ_{α} . Denote by n^* the length of t^* . Let $\langle \xi, \vec{\eta}, \vec{\nu} \rangle \mapsto t^*(\xi, \vec{\eta}, \vec{\nu})$ be a function in V such that—

$$t^* = j_{\alpha} \left(\left\langle \xi, \vec{\eta}, \vec{\nu} \right\rangle \mapsto t^* \left(\xi, \vec{\eta}, \vec{\nu} \right) \right) \left(\kappa, j_{0,\alpha} \left(\beta_1 \right), \dots, j_{0,\alpha} \left(\beta_l \right), \mu_{\alpha_0}, \dots, \mu_{\alpha_k} \right)$$

(we assumed here that t^* can be represented using the same generators as μ_{α} . If this is not the case, modify the set of generators).

We can assume that for every $\langle \xi, \vec{\eta}, \vec{\nu} \rangle$, $t^*(\xi, \vec{\eta}, \vec{\nu})$ is a sequence of length n^* . Since $k_{\alpha}(t^*) = t^*$,

$$[\xi \mapsto t^* (\xi, d(f_{\beta_1}(\xi)), \dots, d(f_{\beta_l}(\xi)), \mu_{\alpha_1}(\xi), \dots, \mu_{\alpha_k}(\xi))]_W = t^*$$

In V[G], denote, for every $\xi < \kappa$,

$$\mu_{\alpha}(\xi)$$
 =the $(n^* + 1)$ -th element in the Prikry sequence of
$$h\left(\vec{\xi}, d\left(f_{\beta_1}(\xi)\right), \dots, d\left(f_{\beta_l}(\xi)\right), \mu_{\alpha_1}(\xi), \dots, \mu_{\alpha_k}(\xi)\right)$$

Clearly $[\xi \mapsto \mu_{\alpha}(\xi)]_W \ge \mu_{\alpha}$.

We argue that equality holds. We will prove that for every $\eta < [\xi \mapsto \mu_{\alpha}(\xi)]_{W}$, $\eta < \mu_{\alpha}$. Assume that such η is given, and let $f \in V[G]$ be a function such that $[f]_{W} = \eta$. Then we can assume that for every $\xi < \kappa$,

$$f(\xi) < \mu_{\alpha}(\xi)$$

and let $p \in G$ be a condition which forces this.

For every $\xi, \vec{\eta}, \vec{\nu}$, consider the set-

 $e\left(\xi,\vec{\eta},\vec{\nu}\right) = \left\{r \in P \setminus \nu_k \colon \exists \gamma < h\left(\xi,\vec{\eta},\vec{\nu}\right), \ r \Vdash \text{ if } t^*\left(\xi,\vec{\eta},\vec{\nu}\right) \text{ is an initial segment of the} \right.$ Prikry sequence of $h\left(\xi,\vec{\eta},\vec{\nu}\right)$, then $f\left(\xi\right) < \gamma$

then $e\left(\vec{\xi}, \vec{\nu}_1, \dots, \vec{\nu}_k\right)$ is \leq^* dense open above conditions which force that—

$$\langle d(f_{\beta_1}(\xi)), \dots, d(f_{\beta_l}(\xi)), \mu_{\alpha_1}(\xi), \dots, \mu_{\alpha_k}(\xi) \rangle = \langle \eta_1, \dots, \eta_l, \nu_1, \dots, \nu_k \rangle$$

This, since, given a name for an element $f(\xi)$ which is forced to be strictly below $\mu_{\alpha}(\xi)$, (which is the element which appears right after $t^*(\xi, \vec{\eta}, \vec{\nu})$ in the Prikry sequence of $h(\xi, \vec{\eta}, \vec{\nu})$), the element can be decided by taking a direct extension.

By Theorem 3.18, the sequence $\langle \beta_1, \dots, \beta_l \rangle$ can be extended to a sequence $\langle \beta'_1, \dots, \beta'_s \rangle$, and p can be extended to a system of conditions,

$$\langle p(\xi, \eta_1, \dots, \eta_s, \nu_1, \dots, \nu_k) : \xi, \eta_1, \dots, \eta_s < \kappa, \nu_1 < \dots < \nu_k < \kappa \rangle$$

such that, for a set of ξ -s in W,

$$p\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{k}}(\xi)\right) \upharpoonright_{\mu_{\alpha_{k}}(\xi)} \vdash p\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{k}}(\xi)\right) \setminus \mu_{\alpha_{k}}(\xi) \in e\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{k}}(\xi)\right)$$

and-

$$p\left(\xi, d\left(f_{\beta_1'}(\xi)\right), \dots, d\left(f_{\beta_s'}(\xi)\right), \mu_{\alpha_1}(\xi), \dots, \mu_{\alpha_k}(\xi)\right) \in G$$

Assume now that $\langle \xi, \vec{\eta}, \vec{\nu} \rangle = \langle \xi, \eta_1, \dots, \eta_s, \nu_1, \dots, \nu_k \rangle$ are given, such that-

$$p\left(\xi, \vec{\eta}, \vec{\nu}\right) \upharpoonright_{\nu_k} \Vdash p\left(\xi, \vec{\eta}, \vec{\nu}\right) \setminus \nu_k \in e\left(\xi, \vec{\eta}, \vec{\nu}\right)$$

Let γ be a P_{ν_k} -name, forced by $p(\xi, \eta_1, \dots, \eta_s, \nu_1, \dots, \nu_k) \upharpoonright_{\nu_k}$ to an ordinal below $h(\xi, \vec{\eta}, \vec{\nu})$, such that $p(\xi, \vec{\eta}, \vec{\nu}) \setminus \nu_k \Vdash f(\xi) < \gamma$. Let $\gamma(\xi, \vec{\eta}, \vec{\nu})$ be the supremum of the set of ordinals $\tau < h(\xi, \vec{\eta}, \vec{\nu})$ such that, some $r \geq p(\xi, \vec{\eta}, \vec{\nu}) \upharpoonright_{\nu_k}$ forces that $\gamma = \tau$. Since $\nu_k < h(\xi, \vec{\eta}, \vec{\nu})$, $\gamma(\xi, \vec{\eta}, \vec{\nu}) < h(\xi, \vec{\eta}, \vec{\nu})$. The function $\langle \xi, \vec{\eta}, \vec{\nu} \rangle \mapsto \gamma(\xi, \vec{\eta}, \vec{\nu})$ lies in V.

By the results of theorem 3.18, there exists a set of ξ -s in W for which—

$$G \ni p\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{k}}(\xi)\right) \vdash$$
if $t^{*}\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{k}}(\xi)\right)$
is an initial segment of the Prikry sequence of
$$h\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{k}}(\xi)\right), \text{ then }$$

$$f\left(\xi\right) < \gamma\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{k}}(\xi)\right)$$

Thus, in $M[j_W(G)]$, where indeed t^* is an initial segment of the Prikry sequence of $k_\alpha(\mu_\alpha)$,

$$[f]_{W} \in \left[\xi \mapsto \gamma\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{k}}(\xi)\right)\right]_{W} = k_{\alpha}\left(j_{\alpha}\left(\langle \xi, \vec{\eta}, \vec{\nu} \rangle \mapsto \gamma\left(\xi, \vec{\eta}, \vec{\nu}\right)\right) \left(\kappa, j_{0,\alpha}\left(\beta'_{1}\right), \dots, j_{0,\alpha}\left(\beta'_{s}\right), \mu_{\alpha_{1}}, \dots, \mu_{\alpha_{k}}\right)\right) < \mu_{\alpha}$$

as desired. \square

Lemma 3.25 Let $U_{\mu_{\alpha}} = \{X \subseteq \mu_{\alpha} : \mu_{\alpha} \in k_{\alpha}(X)\} \cap M_{\alpha}$. Then $U_{\mu_{\alpha}} \in M_{\alpha}$. Furthermore, $k_{\alpha}(U_{\mu_{\alpha}}) = j_{W}(\delta \mapsto U_{\delta})(k_{\alpha}(\mu_{\alpha}))$, where, for every $\delta \in \Delta$, $U_{\delta} = W_{\delta} \cap V$, for W_{δ} which is the measure used in the Prikry forcing at stage δ in the iteration P.

Proof. We first prove that $j_W(\delta \mapsto U_\delta)(k_\alpha(\mu_\alpha)) \in \text{Im}(k_\alpha)$. Then, we will prove that the measure $F \in M_\alpha$ for which $j_W(\delta \mapsto U_\delta)(k_\alpha(\mu_\alpha)) = k_\alpha(F)$ equals to U_{μ_α} .

In order to prove that $j_W(\delta \mapsto U_\delta)(k_\alpha(\mu_\alpha)) \in \operatorname{Im}(k_\alpha)$, we prove that there exists a family $\mathcal{F} \in M_\alpha$ of measures on μ_α , with $|\mathcal{F}| < \mu_\alpha$, such that $j_W(\delta \mapsto U_\delta)(k_\alpha(\mu_\alpha)) \in k_\alpha(F) = k''_\alpha \mathcal{F}$.

Fix, in V, an enumeration W of all the normal measures on measurable cardinals below κ . For every $\langle \xi, \vec{\eta}, \vec{\nu} \rangle$, let $\gamma(\xi, \vec{\eta}, \vec{\nu})$ be the index of $U_{h(\xi, \vec{\eta}, \vec{\nu})}$ in this enumeration. Note that each measure $U_{h(\xi, \vec{\eta}, \vec{\nu})}$ belongs to V, but the sequence $\langle U_{h(\xi, \vec{\eta}, \vec{\nu})} : \xi, \vec{\eta}, \vec{\nu} < \kappa \rangle$ might be external to V. So the function $\langle \xi, \vec{\eta}, \vec{\nu} \rangle \mapsto \gamma(\xi, \vec{\eta}, \vec{\nu})$ doesn't necessarily belong to V.

Fix $\langle \xi, \vec{\eta}, \vec{\nu} \rangle$ and consider the set-

 $e(\xi, \vec{\eta}, \vec{\nu}) = \{r \in P \setminus \nu_k : \text{ there exists a set of ordinals } A \text{ of cardinality strictly smaller than}$ $h(\xi, \vec{\eta}, \vec{\nu}), \text{ such that } r \upharpoonright_{h(\xi, \vec{\eta}, \vec{\nu})} \Vdash \gamma(\xi, \vec{\eta}, \vec{\nu}) \in A\}$

Then $e(\xi, \vec{\eta}, \vec{\nu}) \subseteq P \setminus \nu_k$ is \leq^* -dense open, since $P \upharpoonright_{h(\xi, \vec{\eta}, \vec{\nu})}$ is $h(\xi, \vec{\eta}, \nu)$ -c.c..

Now apply theorem 3.18 and argue as in the previous lemma: There exists (in V) a mapping $\langle \xi, \vec{\eta}, \vec{\nu} \rangle \mapsto A(\xi, \vec{\eta}, \vec{\nu})$ such that, in $M[j_W(G)]$,

$$[\xi \mapsto \gamma \left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{k}}(\xi)\right)]_{W} \in [\xi \mapsto A\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{k}}(\xi)\right)]_{W} = k_{\alpha}'' \left(j_{\alpha}\left(\langle \xi, \vec{\eta}, \vec{\nu} \rangle \mapsto A\left(\xi, \vec{\eta}, \vec{\nu}\right)\right) \left(\kappa, j_{0,\alpha}\left(\beta_{1}'\right), \dots, j_{0,\alpha}\left(\beta_{s}'\right), \mu_{\alpha_{1}}, \dots, \mu_{\alpha_{k}}\right)\right)$$

In M_{α} , let \mathcal{F} be the set of measures on μ_{α} which are indexed in the enumeration $j_{\alpha}(W)$ by an index in the set $\mathcal{A} = j_{\alpha} (\langle \xi, \vec{\eta}, \vec{\nu} \rangle \mapsto A(\xi, \vec{\eta}, \vec{\nu})) (\kappa, j_{0,\alpha}(\beta'_1), \dots, j_{0,\alpha}(\beta'_s), \mu_{\alpha_1}, \dots, \mu_{\alpha_k})$. Note that $|\mathcal{A}| < \mu_{\alpha}$ and thus $|\mathcal{F}| < \mu_{\alpha}$. Then $j_W(\delta \mapsto U_{\delta}) (k_{\alpha}(\mu_{\alpha}))$ is enumerated by the ordinal—

$$\left[\xi \mapsto \gamma\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{k}}(\xi)\right)\right]_{W} \in k_{\alpha}'' \mathcal{A}$$

and thus $j_W(\delta \mapsto U_\delta)(k_\alpha(\mu_\alpha)) \in k''_\alpha \mathcal{F}$, as desired.

Let $F \in M_{\alpha}$ be a measure on μ_{α} such that-

$$j_W(\delta \mapsto U_\delta)(k_\alpha(\mu_\alpha)) = k_\alpha(F)$$

Let us argue that $F = U_{\mu_{\alpha}}$. It suffices to prove that $F \subseteq U_{\mu_{\alpha}}$. Fix a set $X \in F$. Assume that—

$$X = j_{\alpha} \left(\langle \xi, \vec{\eta}, \vec{\nu} \rangle \mapsto X \left(\xi, \vec{\eta}, \vec{\nu} \right) \right) \left(\kappa, j_{0,\alpha} \left(\beta_1 \right), \dots, j_{0,\alpha} \left(\beta_l \right), \mu_{\alpha_1}, \dots, \mu_{\alpha_k} \right)$$

(We assumed again that X can be represented using the same generators as μ_{α} . If this is not the case, modify the set of generators of μ_{α}). Then $k_{\alpha}(X) \in j_{W}(\delta \mapsto U_{\delta})(k_{\alpha}(\mu_{\alpha}))$. As in the previous lemma, let n^{*} be the length of t^{*} , the initial segment of the Prikry sequence of $k_{\alpha}(\mu_{\alpha})$ below μ_{α} . For every $\langle \xi, \vec{\eta}, \vec{\nu} \rangle$, let-

$$e\left(\xi,\vec{\eta},\vec{\nu}\right) = \left\{r \in P \setminus \nu_k \colon r \upharpoonright_{h(\xi,\vec{\eta},\vec{\nu})} \parallel X\left(\xi,\vec{\eta},\vec{\nu}\right) \in U_{h(\xi,\vec{\eta},\vec{\nu})}, \right.$$
if it decides positively, then $r \upharpoonright_{h(\xi,\vec{\eta},\vec{\nu})} \vdash \underset{\sim}{A}^r_{h(\xi,\vec{\eta},\vec{\nu})} \subseteq X\left(\xi,\vec{\eta},\vec{\nu}\right); \text{ else, } r \upharpoonright_{h(\xi,\vec{\eta},\vec{\nu})} \vdash \underset{\sim}{A}^r_{h(\xi,\vec{\eta},\vec{\nu})} \text{ is disjoint}$
from $X\left(\xi,\vec{\eta},\vec{\nu}\right)$. Moreover, $r \upharpoonright_{h(\xi,\vec{\eta},\vec{\nu})} \parallel \ln\left(t^r_{h(\xi,\vec{\eta},\vec{\nu})}\right) > n^*,$
and if it decides positively, then there exists a bounded subset $A\left(\xi,\vec{\eta},\vec{\nu}\right) \subseteq h\left(\xi,\vec{\eta},\vec{\nu}\right) \text{ for which } r \upharpoonright_{\xi,\vec{\eta},\vec{\nu}} \vdash \text{ the } (n^*+1)\text{ -th}$
element of $t^r_{h(\xi,\vec{\eta},\vec{\nu})}$ belongs to $A\left(\xi,\vec{\eta},\vec{\nu}\right)$

By theorem 3.18, there exists a larger set of generators $\beta'_1, \ldots, \beta'_s$ and, for every $\langle \xi, \vec{\eta}, \vec{\nu} \rangle$, a condition $p(\langle \xi, \vec{\eta}, \vec{\nu} \rangle)$, such that, for a set of ξ -s in W,

$$p\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{k}}(\xi)\right) \upharpoonright_{\mu_{\alpha_{k}}(\xi)} \vdash p\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{k}}(\xi)\right) \setminus \mu_{\alpha_{k}}(\xi) \in e\left(\xi, d\left(f_{\beta_{1}'}(\xi)\right), \dots, d\left(f_{\beta_{s}'}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{k}}(\xi)\right)$$

and-

$$p\left(\xi, d\left(f_{\beta_1'}(\xi)\right), \dots, d\left(f_{\beta_s'}(\xi)\right), \mu_{\alpha_1}(\xi), \dots, \mu_{\alpha_k}(\xi)\right) \in G$$

Let us argue first that for a set of ξ -s in W,

$$p\left(\xi, d\left(f_{\beta_1'}(\xi)\right), \dots, d\left(f_{\beta_s'}(\xi)\right), \mu_{\alpha_1}(\xi), \dots, \mu_{\alpha_k}(\xi)\right) \upharpoonright_{\mu_{\alpha_k}(\xi)}$$

decides that-

$$\ln \left(t^{p\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{k}}(\xi)\right)} \right) \leq n^{*}$$

$$\left(t^{h\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{k}}(\xi)\right)} \right) \leq n^{*}$$

Indeed, assume otherwise. Let A^* $(\xi, \vec{\eta}, \vec{\nu})$ be the bounded subset of $h(\xi, \vec{\eta}, \vec{\nu})$ which consists of all the ordinals, which are forced by some extension of $p(\xi, \vec{\eta}, \vec{\nu}) \upharpoonright_{\nu_k}$ to be in $A(\xi, \vec{\eta}, \vec{\nu})$ (whenever $p(\xi, \vec{\eta}, \vec{\nu})$ forces that the length of $t_{h(\xi, \vec{\eta}, \vec{\nu})}^{p(\xi, \vec{\eta}, \vec{\nu})}$ is greater than n^*). Then, in $M[j_W(G)]$,

$$\mu_{\alpha} \in k_{\alpha} \left(j_{\alpha} \left(\langle \xi, \vec{\eta}, \vec{\nu} \rangle \mapsto A^* \left(\xi, \vec{\eta}, \vec{\nu} \right) \right) \left(\kappa, j_{0,\alpha} \left(\beta_1' \right), \dots, j_{0,\alpha} \left(\beta_s' \right), \mu_{\alpha_1}, \dots, \mu_{\alpha_k} \right) \right)$$

But this is a contradiction, since $j_{\alpha}(\langle \xi, \vec{\eta}, \vec{\nu} \rangle \mapsto A^*(\xi, \vec{\eta}, \vec{\nu})) (\kappa, j_{0,\alpha}(\beta'_1), \dots, j_{0,\alpha}(\beta'_s), \mu_{\alpha_1}, \dots, \mu_{\alpha_k})$ is a bounded subset of μ_{α} .

Therefore, we can assume that-

$$p\left(\xi, d\left(f_{\beta_1'}(\xi)\right), \dots, d\left(f_{\beta_s'}(\xi)\right), \mu_{\alpha_1}(\xi), \dots, \mu_{\alpha_k}(\xi)\right) \upharpoonright_{\mu_{\alpha_k}(\xi)}$$

forces that-

$$\ln \left(t^{p\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{k}}(\xi)\right)} \right) \leq n^{*}$$

$$\left(t^{h\left(\xi, d\left(f_{\beta'_{1}}(\xi)\right), \dots, d\left(f_{\beta'_{s}}(\xi)\right), \mu_{\alpha_{1}}(\xi), \dots, \mu_{\alpha_{k}}(\xi)\right)} \right) \leq n^{*}$$

Denote now $p^* = [\xi \mapsto p(\xi, d(f_{\beta'_1}(\xi)), \dots, d(f_{\beta'_s}(\xi)), \mu_{\alpha_1}(\xi), \dots, \mu_{\alpha_k}(\xi))]_W$. Then $p^* \upharpoonright_{k_{\alpha}(\mu_{\alpha})}$ forces that $\mu_{\alpha} \in \mathcal{A}_{k_{\alpha}(\mu_{\alpha})}^{p^*}$. By the definition of the sets $e(\xi, \vec{\eta}, \vec{\nu})$, the set $\mathcal{A}_{k_{\alpha}(\mu_{\alpha})}^{p^*}$ is forced to be either disjoint or contained in $k_{\alpha}(X)$. Since $k_{\alpha}(X) \in j_W(\delta \mapsto U_{\delta})(k_{\alpha}(\mu_{\alpha}))$, it cannot be disjoint (again, by the definition of $e(\xi, \vec{\eta}, \vec{\nu})$). Therefore $\mu_{\alpha} \in k_{\alpha}(X)$ and thus $X \in U_{\mu_{\alpha}}$, as desired. \square .

Finally, let us argue that $j_{\kappa^*} = j_W \upharpoonright_V$. Recall that $\kappa^* = i(\kappa)$, and note that $\kappa^* = \sup\{\mu_\alpha \colon \alpha < \kappa^*\}$.

Lemma 3.26 $M = M_{\kappa^*}, j_W(\kappa) = i(\kappa) \text{ and } j_{\kappa^*} = j_W \upharpoonright_V.$

Remark 3.27 In particular, if $i = j_U$ (namely W is simply generated) then $j_W(\kappa) = j_U(\kappa)$. On the other hand, possibly $j_U(\kappa) < i(\kappa)$, and then $j_W(\kappa) > j_U(\kappa)$.

Proof. Define, similarly to $k_{\alpha} : M_{\alpha} \to M$, the embedding $k_{\kappa^*} : M_{\kappa^*} \to M$ as follows:

$$k_{\kappa^*} \left(j_{\kappa^*} \left(f \right) \left(\kappa, j_{0,\kappa^*} (\beta_1), \dots, j_{0,\kappa^*} \left(\beta_l \right), \mu_{\alpha_1}, \dots, \mu_{\alpha_k} \right) \right) = j_W \left(f \right) \left(\kappa, d \left(\left[f_{\beta_1}(\xi) \right]_W \right), \dots, d \left(\left[f_{\beta_l}(\xi) \right]_W \right), \mu_{\alpha_1}, \dots, \mu_{\alpha_m} \right)$$

for every $f \in V$, β_1, \ldots, β_l generators of i and $\alpha_1 < \ldots < \alpha_m < \kappa^*$. Clearly crit $(k_{\kappa^*}) \ge \kappa^*$. It suffices to prove that k_{κ^*} is the identity function.

Let τ be an ordinal, and let $f \in V[G]$ be a function such that $[f]_W = \tau$. By the κ -c.c. of P_{κ} , there exists $F \in V$ such that for every $\xi < \kappa$, $f(\xi) \in F(\xi)$ and $|F(\xi)| < \kappa$. Therefore, in $M[j_W(G)]$,

$$\tau = [f]_W \in [F]_W = k_{\kappa^*} \left(j_{\kappa^*}(F)(\kappa) \right)$$

But-

$$|j_{\kappa^*}(F)(\kappa)| < j_{\kappa^*}(\kappa) = \kappa^* \le \operatorname{crit}(k_{\kappa^*})$$

so $\eta \in \operatorname{Im}(k_{\kappa^*})$ as desired. \square

3.6 On existence of N

A natural question in view of the main results on the structure j_W is whether always there exists $N, {}^{\kappa}N \subseteq N$ such that M is obtained from it by iterating normal measures only. We do not know the answer in general. However, it turns out to be an affirmative provided some anti-large cardinal assumptions and $V = \mathcal{K}$.

Proposition 3.28 Assume $\neg 0^{\P}$ and $V = \mathcal{K}$.

Let U be a normal ultrafilter over κ and $\Delta \subseteq \kappa$ be a set of measurable cardinals which is not in U. Force with an Easton support iteration P of the Prikry forcings over Δ . Let $G \subseteq P$ be a generic.

Suppose that, in V[G], there is a normal ultrafilter W which extends U.

Then there are $N, i: V \to N$ which satisfy the conditions of theorem 2.7 such that $j_W \upharpoonright V = k \circ i$ and k is formed by iterating normal measures only, starting from N.

Proof. As in subsection 3.1, we analyze $j := j_W \upharpoonright \mathcal{K}$.

By elementarity, $j: \mathcal{K} \to (\mathcal{K})^{M_W}$ and M_W is a generic extension of $(\mathcal{K})^{M_W}$ by an Easton support iteration of Prikry forcings with normal measures in $j(\Delta)$.

By Mitchell [6], j is an iterated ultrapower of \mathcal{K} by its measures and extenders. Recall that $W \cap \mathcal{K} = U$, and so, $U = \{A \subseteq \kappa \mid A \in V, \kappa \in j_W(A)\}$. So, this iterated ultrapower starts with U or with an extender F which normal measure is U.

Note that M_F must be closed under κ -sequences. Otherwise, there will be a set of ordinals $a, |a| < \kappa$ which consists of generators and which is not in M_F . The further Easton support iteration of Prikry forcings will not be able to add such a. Thus, by our assumption, the length of F must be below first measurable cardinal above κ in M_F . The iteration of Prikry forcings above κ does not add new bounded subsets below the first measurable $> \kappa$.

By the same reason, extenders used to continue the iteration must be κ -closed.

None of them can be used infinitely many times (or infinitely many extenders cannot be used), since otherwise, ω —sequences which cannot be added by an Easton support iteration of Prikry forcings, will be produced. It follows from the strong Prikry condition of the forcing, see O. Ben-Neria [1].

This leaves us with a finite iteration by κ -closed extenders (measures).

It is the first part of the iteration.

The rest consisting of iteration of normal measures, each of them is applied ω —many times. Take N to be the first part of the iteration and $i: \mathcal{K} \to N$ be the corresponding embedding.

References

- [1] O. Ben-Neria, Strong Prikry condition
- [2] M. Gitik, Non-minimal P-points, Q-points, APAL,
- [3] M. Gitik, On on measurable violating GCH, APAL
- [4] M. Gitik, E. Kaplan, On restrictions of ultrafilters ...
- [5] M. Gitik, E. Kaplan, Non-stationary support
- [6] W. Mitchell, handbook?
- [7] R. Schindler
- [8] Moti Gitik. Prikry-type forcings. In *Handbook of set theory*, pages 1351–1447. Springer, 2010.
- [9] Moti Gitik and Eyal Kaplan. On restrictions of ultrafilters from generic extensions to ground models. *The Journal of Symbolic Logic*, pages 1–31, 2021.
- [10] Kenneth Kunen and Jeff B Paris. Boolean extensions and measurable cardinals. *Annals of Mathematical Logic*, 2(4):359–377, 1971.
- [11] William J Mitchell. The core model for sequences of measures. i. In *Mathematical Proceedings of the Cambridge Philosophical Society*, volume 95, pages 229–260. Cambridge University Press, 1984.
- [12] Ralf Schindler. Iterates of the core model. *Journal of Symbolic Logic*, pages 241–251, 2006.
- [13] Omer Ben-Neria. Forcing magidor iteration over a core model below 0. Archive for Mathematical Logic, 53(3-4):367–384, 2014.

- [14] Omer Ben-Neria. The structure of the mitchell order–ii. Annals of Pure and Applied Logic, 166(12):1407–1432, 2015.
- [15] Omer Ben-Neria. The structure of the mitchell order €"i. Israel Journal of Mathematics, 214(2):945–982, 2016.
- [16] Omer Ben-Neria and Spencer Unger. Homogeneous changes in cofinalities with applications to hod. *Journal of Mathematical Logic*, 17(02):1750007, 2017.
- [17] Sy-David Friedmanc and Menachem Magidor. The number of normal measures. *The Journal of Symbolic Logic*, 74(3):1069–1080, 2009.
- [18] Moti Gitik and Eyal Kaplan. On restrictions of ultrafilters from generic extensions to ground models. *The Journal of Symbolic Logic*, pages 1–31, 2021.
- [19] Moti Gitik and Eyal Kaplan. Non-stationary support iterations of prikry forcings and restrictions of ultrapower embeddings to the ground model. *Annals of Pure and Applied Logic*, 174(1):103164, 2023.
- [20] Gabriel Goldberg. The ultrapower axiom. In *The Ultrapower Axiom*. De Gruyter, 2022.
- [21] Joel David Hamkins. Gap forcing. Israel Journal of Mathematics, 125(1):237–252, 2001.
- [22] Akihiro Kanamori. The higher infinite: large cardinals in set theory from their beginnings. Springer Science & Business Media, 2008.
- [23] Eyal Kaplan. The magidor iteration and restrictions of ultrapowers to the ground model. *Israel Journal of Mathematics*, *To appear*, 2022.
- [24] Peter Koepke. An introduction to extenders and core models for extender sequences. Studies in Logic and the Foundations of Mathematics, 129:137–182, 1989.
- [25] Kenneth Kunen and Jeff B Paris. Boolean extensions and measurable cardinals. *Annals of Mathematical Logic*, 2(4):359–377, 1971.
- [26] Menachem Magidor. How large is the first strongly compact cardinal? or a study on identity crises. *Annals of Mathematical Logic*, 10(1):33 57, 1976.

[27] William J Mitchell. The core model for sequences of measures. i. In *Mathematical Proceedings of the Cambridge Philosophical Society*, volume 95, pages 229–260. Cambridge University Press, 1984.