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1 Introduction

Assume that κ is a measurable cardinal, 2κ = κ+. Let P = Pκ be an Easton support iteration
of Prikry-type forcings, and let G ⊆ P be generic over V . Assume that κ is measurable in
V [G], and let W ∈ V [G] be a normal measure on κ. Denote by jW : V [G] → M [jW (G)] '
Ult (V [G] ,W ). What can be said about W , and jW �V : V → M?

By a well known series of results in Inner Model theory, jW �V is an iterated ultrapower
of V , provided that the variety of large cardinals in the universe is limited. For instance, by
Mitchell [27], assuming that there is no inner model with a cardinal α with o(α) = α++ and
V = K is the core model, jW �K is an iteration of K by normal measures. By a result of
Schindler [12], assuming that there is no inner model with a Wooding cardinal, jW �K is an
iteration of K by its extenders.

This question can be addressed in the following dual form: assume that i : V → N is an
elementary embedding, definable in V , with crit(i) = κ, and let U = {X ⊆ κ : κ ∈ i(X)} be
the normal measure on κ derived from i. Can U be extended to a normal measure W ∈ V [G],
such that (using the above notations) there exists an elementary embedding k : N → M for
which jW �V= k ◦ i?

2 The General Framework

Definition 2.1 An iteration 〈Pα, Q∼β : α ≤ κ , β < κ〉 is called an Easton support iteration
of Prikry-type forcings if and only if, for every α ≤ κ and p ∈ Pα,

1. p is a function with domain α such that for every β < α, p � β ∈ Pβ, and p � β 


p(β) ∈ Q
∼β.

1



2. If α ≤ κ is inaccessible, then supp(p) ∩ α is bounded in α (supp(p) ⊆ α is the set of
indices γ on which p(γ) is forced to be non-trivial).

Suppose that p, q ∈ Pα. Then p ≥ q, which means that p extends q, holds if and only if:

1. supp(q) ⊆ supp(p).

2. For every β ∈ supp(q), p � β 
 p(β) ≥β q(β) (where ≥β is the order of Qβ).

3. There is a finite subset b ⊆ supp(q), such that for every β ∈ supp(q) \ b, p � β 


p(β) ≥∗
β q(β) (where ≥∗

β is the direct extension order of Qβ).

If b = ∅, we say that p is a direct extension of q, and denote it by p ≥∗ q.

The following properties are standard (see [8] for example):

Lemma 2.2 For every λ ≤ κ, Pλ satisfies the Prikry property.

Lemma 2.3 For every λ ≤ κ which is Mahlo, Pλ has the λ− c.c..

Let U be a normal ultrafilter over κ. Let 〈Pα, Q∼β | α ≤ κ, β < κ〉 be an Easton support
iteration of a Prikry type forcing notions. Suppose that the following hold:

1. There exists an unbounded subset ∆ ⊆ κ, ∆ /∈ U , such that, for every α < κ,

(a) α ∈ ∆ −→ 
Pα Q
∼α is nontrivial.

(b) α /∈ ∆ −→ 
Pα Q
∼α is trivial.

2. For every α < κ, 
Pα 〈Q
∼α,≤∼

∗
α〉 is α−closed.

3. For every α ∈ ∆, 
Pα |Q
∼α| < min(∆ \ α + 1).

Let G be a generic subset of P = Pκ. We would like to analyze the normal measures on
κ in V [G] extending U . The standard way to do so appears in [8], we present it here for
sake of completeness.

Lemma 2.4 There exists a normal measure U∗ ∈ V [G] on κ which extends U .

Proof. Let 〈A∼α : α < κ+〉 be an enumeration, in V , of P = Pκ-names, such that every
X ∈ (P(κ))V [G] has the form (A∼α)G for some α < κ+. Such list of names exists since P = Pκ

is κ − c.c.. Now, construct, in V [G], a ≤∗-increasing sequence of conditions 〈qα : α < κ+〉,
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such that, over N [G], qα ‖ κ ∈ jU (A∼α). Such a sequence exists since V [G] � ”〈jU(P )\κ,≤∗

〉 is κ+ − closed.”
Let 〈 q

∼α : α < κ+〉 be a P -name for the above sequence. Now, define U∗ ⊇ U as follows:
For every α < κ+, (A∼α)G ∈ U∗ if and only if there exists p ∈ G and α < κ+ such that–

p_ q
∼α � κ ∈ i(A∼α)

We argue that U∗ defined above is a normal measure which extends U .
Assume that δ < κ and 〈X∼α : α < δ〉 is a Pκ-name for a partition of κ in V [G]. For every

α < δ, define–
Yα = {β < κ+ : ∃p ∈ Pκ, p 
 X∼α = A∼β}

Since P is κ− c.c., |Yα| < κ. Denote–

Y =
⋃
α<δ

Yα

Then Y ⊆ κ+ is a bounded subset. Pick α∗ < κ+ high enough which bounds Y . Let us
argue that there exists p ∈ G and a unique β < δ such that–

p_ q
∼α∗ 
 κ ∈ jU (A∼β)

and thus (A∼β)G ∈ U∗.
Work in N [G]. Note that 〈Aβ : β ∈ Y 〉 covers the sequence 〈Xα : α < δ〉. Since qα∗ is ≤∗

above any qβ for β ∈ Y ,
∀ξ < α, qα∗ ‖ κ ∈ i(X∼ξ)

Since 〈i (Xξ) : ξ < δ〉 is a partition of i(κ), there exists a unique ξ∗ < δ such that qα∗ 
 κ ∈
i (A∼ξ∗). Let p ∈ G be a condition forcing this. Then p_ q

∼α∗ 
 κ ∈ i (X∼ξ∗), as desired.
A similar argument shows that U∗ is normal. Indeed, given a Pκ-name for a regressive

function f
∼
: κ → κ, define, for every α < κ,

Xα = {ξ < κ : f(ξ) = α}

and proceed as before to find a unique α < κ such that Xα ∈ U∗. �

In particular, U can be extended to a normal measure U∗ ∈ V [G], such that the ultra-
power embedding jU∗ : V [G] → M [jU∗(G)] satisfies that jU∗ �V= k ◦ jU , for an embedding
k : MU → M which satisfies crit(k) > κ. Indeed, define k ([f ]U) = [f ]U∗ for every f : κ → V

in V .
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An immediate question is whether this can be generalized further. Given an elementary
embedding i : V → N with critical point κ, definable in V , can U = {X ⊆ κ : κ ∈ i(X)} be
extended to a normal measure W ∈ V [G] such that jW �V= k ◦ i, for some k : N → M with
crit(k) > κ?

The first step is to use the embedding i : V → N to extend U .

Lemma 2.5 Assume that i : V → N is an elementary embedding definable in V , with
crit(i) = κ, such that |i(κ)| = κ+, κ /∈ i(∆), N ⊆ V and V ∩ κN ⊆ N . Denote–

U = {X ⊆ κ : κ ∈ i(X)}

Then G is i(P ) �κ= P -generic over N , and:

1. For every q ∈ i(P ) \ κ, there is H ∈ V [G] with q ∈ H, which is 〈i(P ) \ κ,≤∗ 〉-generic
over N [G].

2. Given such H ∈ V [G], define–

UH = {(A∼)G : A∼ is a P − name for a subset of κ, and there exists

p ∈ G ∗H such that p 
 κ ∈ i (A∼)}

Then UH is a normal, κ−complete ultrafilter on κ which extends U .

Proof.

1. We can enumerate, in V [G], all the maximal antichains in 〈i(P ) \ κ,≤∗〉 with order
type κ+, by i(κ)-c.c. of the forcing, and since V [G] � |i(κ)| = κ+. Note that κ 6∈ i (∆),
so in the sense of N [G], the forcing 〈i(P ) \ κ,≤∗〉 is more than κ-closed. Moreover,
since V � κN ⊆ N , and P = Pκ is κ−c.c., V [G] � <κN [G] ⊆ N [G]. Therefore, every
sequence of length κ of conditions in i(P ) \ κ which belongs to V [G] belongs to N [G]

as well. Thus, in the sense of V [G], the forcing 〈i(P ) \ κ,≤∗〉 is κ+-closed.

Starting from any condition in i(P ) \ κ, we can construct (in V [G]) a sequence of
direct extensions of it, meeting every maximal antichain. This sequence generates a
≤∗-generic over N [G] for i(P ) \ κ, which belongs to V [G].

2. First, we prove that W = UH is a normal, κ-complete ultrafilter on κ which extends U .
It is not hard to verify that W is a filter. We prove that W is a κ-complete ultrafilter.
Assume that 〈Xα : α < δ〉 is a partition of κ, for some δ < κ. Work in N [G]. Let
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D ⊆ i(P ) \ κ be the ≤∗-dense open set of conditions which decide the unique α < δ

for which κ ∈ i (X∼α). Then such a statement is forced by some r ∈ H. Let p ∈ G be a
condition which forces that r has this property, and also decides the value of α. Then
p_r 
 κ ∈ i (Xα) and thus Xα ∈ W . Normality of W follows by a similar argument,
using the dense set of conditions deciding the value of i(f

∼
)(κ) for a given regressive

function f : κ → κ. The argument works since we don’t force over κ in N .

�

In general, the settings of lemma 2.5 are not enough ensure that jUH
�V= k ◦ i for some

k with crit(k) > κ. For instance, given a normal measure U on κ in V with ∆ /∈ U , the
embedding i = jU2 satisfies the settings of lemma 2.5, but cannot be used to extend U to a
measure UH for which jUH

= k ◦ i for some embedding k with crit(k) > κ. This follows since
i fails to satisfy clause 3 in the next claim:

Claim 1 Assume that U ∈ V is a normal measure on κ, W ∈ V [G] is a normal measure
which extends U , i : V → N is an elementary embedding and jW �V= k ◦ i for some k : N →
M with crit(k) > κ. Then–

1. {X ⊆ κ : κ ∈ i(X)} = U .

2. |i(κ)| = κ+.

3. {i(f)(κ) : f ∈ V, f : κ → κ} is unbounded in i(κ).

Proof.

1. {X ⊆ κ : κ ∈ i(X)} = U : Indeed, let X ⊆ κ in V with κ ∈ i(X). By applying
k : N → M it follows that κ ∈ jW (X) and hence X ∈ W . Since X ∈ V and U = W∩V ,
it follows that X ∈ U .

2. |i(κ)| = κ+: This holds since, in V [G], |jW (κ)| = 2κ = κ+ (since, in V , 2κ = κ+), and
i(κ) ≤ jW (κ).

3. {i(f)(κ)|f : κ → κ} is unbounded in i(κ): Given β < i(κ), let f ∈ V [G] be a function
such that [f ]W = k (β). Since k (β) < k (i(κ)) = jW (κ), we can assume that f : κ → κ.
The Easton support ensures that there exists g : κ → κ in V which dominates f . Thus
i (g) (κ) ≥ β (indeed, by applying k : N → M on both sides, this is equivalent to
jW (g)(κ) ≥ k (β) = [f ]W , which holds, since g dominates f . Note that, when applying
k, we used the fact that crit(k) > κ).
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Remark 2.6 M. Magidor gave the following remark, that allows to reduce the assumptions
imposed on i above: Assuming that N ⊆ V and i : V → N is definable in V [G], it follows
that N is a class of V . Indeed, pick a formula ϕ and a parameter a ∈ V [G] such that
for every x, y in V , ϕ(x, y, a) holds in V [G] if and only if i(x) = y. For every ordinal α
pick a condition pα ∈ G which decides the value of the set

(
Vi(α)

)N , which is the set y

for which ϕ (Vα, y, a) holds. Since P is a set forcing, there exists p∗ ∈ G such that, for
unboundedly many ordinals α, pα = p∗. Then N can be defined as a class of V using p∗,
N =

⋃
{y : ∃α ∈ ON, p∗ 
 ϕ (Vα, y, a∼)}.

Theorem 2.7 Assume that ∆ ⊆ κ is unbounded, U ∈ V is a normal measure on κ with
∆ /∈ U , and i : V → N is an elementary embedding, definable in V , such that the properties
of lemma 2.5 and claim 1 hold, namely:

1. crit(i) = κ.

2. V ∩ κN ⊆ N .

3. κ /∈ i(∆).

4. U = {X ⊆ κ : κ ∈ i(X)}.

5. |i(κ)| = κ+.

6. {i(f)(κ) : f ∈ V, f : κ → κ} is unbounded in i(κ).

Assume also that every element of N has the form i(f) (β1, . . . , βl) for some f ∈ V and
β1 < . . . < βl < i(κ). Then there exists a measure W ∈ V [G] extending U , such that,
denoting Ult (V [G] ,W ) ' MW [jW (G)], there exists k : N → MW with crit(k) > κ such that
jW �V= k ◦ i.

Theorem 2.7 will be proved by a sequence of lemmata, concluded in lemma 2.15. The
main idea in the proof of theorem 2.7 is to add representing functions for all the generators
of i above κ. This is needed since jW �V has a single generator κ.

Definition 2.8 An ordinal β is called a generator of i : V → N if there are no n < ω,
ordinals β1, . . . , βn below β and a function f ∈ V such that β = i (f) (β1, . . . , βn).
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In the next lemma we construct a function α 7→ θα in V [G], which will be utilized,
alongside functions in V , to represent the generators of i in Ult (V [G] ,W ).

Lemma 2.9 There exists a Pκ-name for a sequence of ordinals, 〈θα : α ∈ ∆〉, such that, for
every β < κ and p ∈ Pκ, there is α0 < κ such that for every α ≥ α0 there exists p∗ ≥∗ p such
that p∗ 
 θα = β.

Remark 2.10 There are natural candidates for the ordinals 〈θα : α ∈ ∆〉 in most of the
common examples. For instance, if P = Pκ is an iteration of Prikry forcings, we can take
θα = the first element in the Prikry sequence added to α; If Pκ is an iteration of Cohen
forcings, take θα to be the least element in the Cohen subset added to α.

Proof. Fix a cardinal α < κ. Let τα < κ be the least ordinal such that P �(α,τα) is not
α− c.c.. We will argue below that such τα < κ exists, but first, let us show that this suffices:
Pick an unbounded subset X ⊆ α, such that, for every α, α′ ∈ X,

α < α′ =⇒ τα < τα′

(for instance, let X be the club of closure points of the function α 7→ τα). Enumerate
X = 〈xα : α ∈ ∆〉. For every α ∈ ∆, let 〈qxα,ξ : ξ < xα〉 be an antichain in P(xα,τxα ) of
cardinality α. Define θα to be the unique ordinal ξ < κ for which pxα,ξ ∈ G �(xα,τxα ) (if there
is no such ξ, which is possible since the antichain is not necessarily maximal, set θα = 0).

Now, given β < κ and a condition p ∈ Pκ, pick first α ∈ ∆ for which xα bounds the
support of p. Direct extend p to p∗ such that p∗ �(xα,τxα )= qxα,β. Then by our definition, p∗

forces that θα = β.
Let us argue now that indeed, for every α < κ there exists τα < κ such that P �(α,τα) is

not α − c.c.: Pick τα such that there are α-many elements of ∆ in the interval (α, τα). Let
〈τα,ξ : ξ < α〉 be an enumeration of the first α-many elements in (α, τα)∩∆. For every ξ < α,
let x∼ξ, y∼ξ be Pτα,ξ

-names, forced by 0Pτα,ξ
to be pair of incompatible elements of Q

∼τα,ξ
. Such

a pair exists since Q
∼τα,ξ

is nontrivial.
Now, for every σ ∈ 2<α, let pσ ∈ P �(α,τα) be the condition which satisfies, for every

ξ < α, that–

pσ �ξ
 pσ (ξ) =

{
x∼ξ If σ (ξ) = 0

y
∼ξ If σ (ξ) = 1

Note that τα is the limit of the first α many elements above α in ∆, and thus τα is singular,
so the support of a condition in P = Pκ may be unbounded in τα.
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Then 〈pσ : σ ∈ 2<α〉 is an antichain in P �(α,τα) of cardinality at least α. �

Remark 2.11 Given a function α 7→ θ∼α as in lemma 2.9, we slightly abuse the notation
and denote i (α 7→ θ∼α) by 〈 θ∼α : α < i(κ)〉.

Lemma 2.12 Under the assumptions of theorem 2.7, there exists H ∈ V [G] which is 〈i(P )\
κ,≤∗〉-generic over N [G], with the following property:

(∗) For every generator β ∈ i(κ) \ (κ+ 1) of i, there exists a function f = fβ ∈ V,

f : κ → κ and a condition q ∈ H such that q 
 β = i
(
α 7→ θ∼f(α)

)
(κ) .

where 〈 θ∼α : α < i(κ)〉 is as in remark 2.11.

Proof. In V [G], let 〈Aξ | ξ < κ+〉 be an enumeration of maximal antichains in i(P ). Let
〈βξ | ξ < κ+〉 be an enumeration of all the generators of i below i(κ). Define in V [G] a
≤∗ −increasing sequence 〈rξ | ξ < κ+〉. Assume that 〈rξ : ξ < ξ∗〉 has been constructed for
some ξ∗ < κ+. Pick a condition r which ≤∗ extends all the conditions 〈rξ : ξ < ξ∗〉 constructed
so far, and, by extending it, assume that r extends a condition in Aξ∗ . Finally, let α0 < i(κ)

be such that for every α ≥ α0 there exists r∗ ≥∗ r which forces that i (ξ 7→ θξ) (α) = βξ∗ .
Pick any α ≥ α0 below i(κ) which has the form i (f) (κ) for some f = fβξ∗ ∈ V , and let
rξ∗ ≥∗ r be a condition which forces that i (ξ 7→ θξ) (α) = βξ∗ .

Finally, let H be the ≤∗-generic generated from 〈rξ : ξ < ξ∗〉. �

Remark 2.13 Repeating the above argument, we can construct 2κ
+-many distinct generic

sets H satisfying property (∗), by constructing a binary tree 〈rσ : σ ∈ 2<κ+〉 of conditions,
which are ≤∗-increasing in each branch, and for each σ ∈ 2<κ+ , rσ_〈0〉 and rσ_〈1〉 are ≤∗-
incompatible. Assuming 2κ

+
= κ++, this provides the maximal number of generic sets H in

V [G] for 〈i(P ) \ κ,≤∗ 〉 over N [G].
Below we will define for every such H a measure UH ∈ V [G] on κ which extends U ;

under mild assumptions on the forcing notions Q
∼α, we will prove that for H 6= H ′ satisfying

property (∗), UH 6= UH′ (see theorem 2.18). Assuming GCH, this produces the maximal
number κ++ of normal measures on κ, generalizing the well known result of Kunen and
Paris [25].

Remark 2.14 Not every generic set H ∈ V [G] for 〈i(P ) \ κ,≤∗ 〉 satisfies property (∗).
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Indeed, assume that i : V → N has at least one generator in the interval (κ, i(κ)). Let
σ : MU → N be the embedding which maps each element [f ]U of MU to i(f)(κ) (here f ∈ V

is any function with domain κ). σ has critical point strictly above κ+, since (κ+)
N
= κ+.

In V [G], let HU ⊆ jU(P ) \κ be ≤∗-generic over MU [G]. Let H ⊆ i(P ) \κ be the generic
set generated from σ′′HU . We argue that H is indeed ≤∗-generic over N . Let D ∈ N be a
≤∗-dense open subset of i(P ) \ κ. Write D∼ = i(F ) (κ, β1, . . . , βl) for some function F ∈ V ,
l < ω and generators β1, . . . , βl < i(κ) of i. We can assume that for every ξ, η1, . . . , ηl,
F (ξ, η1, . . . , ηl) ⊆ P \ ξ is forced to be ≤∗-dense open subset of P \ ξ. Define, in MU ,

DU =
⋂

γ1,...,γl<jU (κ)

jU(F ) (κ, γ1, . . . , γl)

and note that, since the amount of generators γ1, . . . , γl < jU(κ) in MU is κ+, and 〈jU(P ) \
κ,≤∗ 〉 is more than κ+-closed, DU is ≤∗-dense open subset of jU(P ) \ κ. Pick any q ∈
HU ∩DU . Then σ(q) ∈ D ∩H, since σ(DU) ⊆ D.

Since σ′′G ∗ HU ⊆ G ∗ H, the embedding σ : MU → N can be lifted to an embedding
σ∗ : MU [G ∗HU ] → N [G ∗H].

Pick now any generator β of i in the interval (κ, i(κ)). We argue that there is no f ∈ V

such that H 
 β = i
(
α 7→ θ∼f(α)

)
(κ). Indeed, otherwise, by elementarity of σ∗, there exists

β∗ < jU(κ) such that–
HU 
 β∗ = jU

(
α 7→ θ∼f(α)

)
(κ)

Let g ∈ V be a function such that β∗ = jU(g)(κ). Then–

β = σ∗ (β∗) = i (g) (κ)

contradicting the fact that β is a generator of i.

Given i, N, U as in theorem 2.7 and a generic set H ∈ V [G] for 〈i(P )\κ,≤∗〉 over N [G],
define–

UH = {(A∼)G : A∼ is a P − name for a subset of κ, and there exists

p ∈ G ∗H such that p 
 κ ∈ i (A∼)}

Then UH is a normal, κ-complete ultrafilter which extends U . This follows by repeating the
argument of lemma 2.5.

The model MUH
' Ult (V [G] , UH) is of the form M [G∗], where M is the image of V and

G∗ = jUH
(G) is jUH

(P )−generic over M in sense of MUH
. We conclude the proof of theorem

2.7 by defining an elementary embedding k : N → M and proving that crit(k) > κ.
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In the next lemma we continue the abuse of notation as in remark 2.11, and denote–

jUH
(〈θξ : ξ ∈ ∆〉) = 〈θξ : ξ ∈ jUH

(∆)〉

Lemma 2.15 Assume the settings of theorem 2.7. Suppose that H is a generic set for
〈i(P ) \ κ,≤∗〉 over N [G] with the property (∗). Define then k : N → M as follows:

k (i(f)(κ, β1, ..., βl)) = jUH
(f)

(
κ, θ[fβ1]UH

, ..., θ[
fβl

]
UH

)
For every l < ω, β1, . . . , βl < i(κ) generators of i and f ∈ V (the functions fβi

, 1 ≤ i ≤ l,
are as in lemma 2.12).

Then k : N → M is elementary, crit(k) > κ and jUH
�V= k ◦ i.

Proof. Denote W = UH . Let us prove that the embedding k defined above is elementary.
Assume that x, y ∈ N . There are functions f, g in V , generators β1 < . . . < βl < i(κ) such
that–

x = i(f) (κ, β1, . . . , βl) , y = i(g) (κ, β1, . . . , βl)

Assume now that k(x) = k(y), namely–

jW (f)

(
κ, θjW

(
fβ1

)
(κ), . . . , θjW

(
fβl

)
(κ)

)
∈ jW (g)

(
κ, θjW

(
fβ1

)
(κ), . . . , θjW

(
fβl

)
(κ)

)
Then–

{ξ < κ : f
(
ξ, θfβ1 (ξ), . . . , θfβl (ξ)

)
∈ g

(
ξ, θfβ1 (ξ), . . . , θfβl (ξ)

)
} ∈ W

and by the definition of W , there exists p ∈ G and r ∈ H such that–

p_r 
 κ ∈ i
(
{ξ < κ : f

(
ξ, θ∼fβ1 (ξ)

, . . . , θ∼fβl (ξ)

)
∈ g

(
ξ, θ∼fβ1 (ξ)

, . . . , θ∼fβl (ξ)

)
}
)

By extending r ∈ H finitely many times, p_r 
 θ∼
(
i(fβm )(κ)

) = βm holds for every 1 ≤ m ≤ k.
Thus, the last equation can be replaced with–

p_r 
 i(f) (κ, β1, . . . , βl) ∈ i(g) (κ, β1, . . . , βl)

but the forced statement above is entirely in N , and since a condition forces it, it is true in
N . Thus–

i(f) (κ, β1, . . . , βl) ∈ i(g) (κ, β1, . . . , βl)

as desired. The implication in the other direction is proved similarly.
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Clearly crit(k) > κ. We finish the proof by showing that jW �V= k ◦ i. Let x ∈ V and
let cx : κ → V be the constant function with value x. Then–

k (i(x)) = k (i (cx) (κ)) = jW (cx) (κ) = jW (x)

as desired. �

Let us now study the properties of the embedding k : N → M . We assume the settings
of theorem 2.7.

Lemma 2.16 If ≤=≤∗, then k is the identity and M = N .

Proof. Fix an ordinal η, and let f ∈ V [G] be a function such that η = [f ]W . We will prove
that η ∈ Im(k). Indeed, consider the set–

{p ∈ i(P )/G | ∃τ(p 
 i(f
∼
)(κ) = τ)}

It is ≤ −dense in N [G]. So, if ≤=≤∗, then H meets it. Thus, there exists a condition q ∈ H,
a function g ∈ V and generators β1, . . . , βl of i, such that q 
 i (f

∼
) (κ) = i(g) (κ, β1, . . . , βl).

Thus, by the definition of W ,

{ξ < κ : f(ξ) = g
(
ξ, θfβ1 (ξ), . . . , θfβl (ξ)

)
} ∈ W

and thus η = [f ]W = k (i(g) (κ, β1, . . . , βl)).
�

In general, M should not be equal to N . Thus, for example, they will differ if the Prikry
forcing was used unboundedly often below κ.

Lemma 2.17 k′′H ⊆ G∗ \ κ.

Proof. Let q be in H, and let p ∈ G be a condition such that p 
 q
∼

∈ H∼ (recall that
H ∈ V [G]). Clearly,

p_ q
∼


 q
∼

∈ Γ \ κ

where Γ is the canonical i(P )-name for the generic set for i(P ) over V .
Pick f : [κ]n → κ, f ∈ V and β1 < ... < βn < i(κ) such that q

∼
= i(f)(β1, ..., βn). For

every m, 1 ≤ m ≤ n, there are fm : κ → κ, fm ∈ V such that qi(fm)(κ),βm ∈ H, namely,
βm = θi(fm)(κ).
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Let us argue that the set–

Aq = {ν < κ | f(θf1(ν), ..., θfn(ν)) ∈ G∼ \ ν}

is in W. Pick any q ≤∗ q∗ ∈ H which ≤∗ which forces that βm = θi
(
fβm

)
(κ), for every

1 ≤ m ≤ n. Recall that–

q = i(f)(β1, ..., βn) = i(f)(θi(f1)(κ), ..., θi(fn)(κ))

and thus p_ q
∼

∗ 
 κ ∈ i(A∼q).
�

The next lemma generalizes a Kunen-Paris result (see remark 2.13).

Theorem 2.18 Let H,H ′ ∈ V [G] be generic sets for 〈i(P ) \ κ,≤∗ 〉 over N [G]. Suppose
that H and H ′ satisfy (∗). Assume that for every β < κ, if q, q′ ∈ Qβ are incompatible
according to the order ≤∗, then–

Dβ(q) = {r ∈ Qβ | r is ≤ −incompatible with q}

is ≤∗ −dense above q′, or

Dβ(q
′) = {r ∈ Qβ | r is ≤ −incompatible with q′}

is ≤∗ −dense above q.1

Suppose that H 6= H ′, then UH 6= UH′.

Remark 2.19 Note that if the Qβ-s are taken to be Prikry forcings, then the above property
holds. Indeed, assume that q = 〈t, A〉 and q′ = 〈t′, A′〉 are ≤∗-incompatible. Then t 6= t′. As-
sume without loss of generality that t is an end extension of t′. Then D(q) = {r : r, q are ≤∗

-incompatible} is ≤∗-dense open above q′. Indeed, pick a condition 〈t′, B〉 ≥∗ 〈t′, A〉. Shrink
B to the set B∗ = B \ (max(t) + 1). Then 〈t′, B∗〉 ≥∗ 〈t′, B〉 and is incompatible with
q = 〈t, A〉.

Proof. Suppose otherwise, i.e. H 6= H ′, but UH = UH′ := W .
Let k : N → M be the elementary embedding defined from H and k′ : N → M from H ′.

1This type of condition usually holds. For example, if we iterate Prikry forcings, then just shrinking sets
of measure one will produce such type of incomparability.
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Claim 2 k 6= k′.

Proof. Assume for contradiction that k = k′. Thus, by Lemma 2.17, every pair of elements
from H,H ′ are ≤-compatible. We will argue that this implies that H = H ′. It suffices to
prove that every pair of conditions q ∈ H, q′ ∈ H ′ are ≤∗-compatible.

Assume otherwise. Let α < κ be the least ordinal such that there are pair of con-
ditions q ∈ H, q′ ∈ H ′ for which q �α, q′ �α are ≤∗-incompatible. α cannot be limit, since
≤∗-compatibility of all the initial segments of q, q′ below α implies that q �α and q′ �α are ≤∗-
compatible themselves (if α is inaccessible, this is clear since the support of q, q′ is bounded
in α; if the supports of q, q′ are unbounded in α, just intersect sets of measure one to find a
common direct extension). Thus α = β+1 is successor, and q (β), q′ (β) are ≤∗-incompatible.
By the property of the forcing Qβ, without loss of generality, Dβ (q) is ≤∗-dense open above
q′. Since q′ ∈ H ′ (β), q′ can be extended to a condition r ∈ H ′, such that r(β) ∈ Dβ(q). In
particular, q ∈ H, r ∈ H ′ are ≤-incompatible, which is a contradiction. � of the claim.

Since k 6= k′, there exists a generator β of i such that k(β) 6= k′(β). Pick the least such
generator β.

Claim 3 For every generator β′ < β of i, there exists a function fβ′ ∈ V such that each
generic H,H ′ has a condition which forces that β′ = i (fβ′) (κ).

Proof. This essentially follows from the minimality of β.
Indeed, let fβ′ and f ′

β′ be the distinct functions produced from property (∗) of H,H ′ with
respect to the generator β′. Assume for contradiction that one of the generics, say H, has a
condition which forces that θ∼i

(
fβ′

)
(κ)

6= θ∼i
(
f ′
β′

)
(κ)

. By applying k, in M [jW (G)],

θ[
fβ′

]
W

6= θ[
f ′
β′

]
W

namely–
k (β′) 6= k′ (β′)

contradicting the minimality of β. � of claim.
Recall now that k(β) 6= k′(β). Thus, there are two distinct functions f, f ′ in V such

that–

1. Some condition in H forces that β = θ∼i(f)(κ).

2. Some condition in H ′ forces that β = θ∼i(f ′)(κ).
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3. Without loss of generality, {ξ < κ : θf ′(ξ) < θf(ξ)} ∈ W .

There exists an ordinal β′ such that some condition in H forces that θ∼i(f ′)(κ) = β′.
(Remark: This should be proved). By the third property above, β′ < β.

We argue that β′ is a generator of i as well. This will finish the proof: once we prove
that β′ is a generator of i, it follows from claim 3 that θi(f ′)(κ) represents β′ in the sense of
both generics, H,H ′. However, in the sense of H ′, it represents β, which is a contradiction.

Assume for contradiction that β′ is not a generator of i. Then there is a function g ∈ V

and β1, . . . , βl below β′, such that β′ = i(h) (κ, β1, . . . , βl). Since H forces that β′ = θ∼i(f ′)(κ),
it follows that–

{ξ < κ : g
(
ξ, θfβ1 (ξ), . . . , θfβl (ξ)

)
= θf ′(ξ)} ∈ UH = W

Thus the same set belongs to UH′ . Therefore, H ′ forces that–

β = θi(f ′)(κ) = i(g) (κ, β1, . . . , βl)

contradicting the fact that β is a generator of i (note that we used claim 3 when arguing
that the generators βi, 1 ≤ i ≤ l, are represented the same way in the sense of H,H ′). �

Definition 2.20 A measure W ∈ V [G] is called simply generated if W = UH for some
U ∈ V , where H is generic for 〈jU(P ) \ κ,≤∗〉 over MU [G].

Remark 2.21 Given a simply generated normal measure W ∈ V [G] as above, the param-
eters U and H are uniquely defined from it. Indeed, we will prove in the next lemma that
U = W ∩V belongs to V , and is a normal measure with ∆ /∈ U . Now, assume that there are
H,H ′, generic over MU [G] for 〈jU(P ) \ κ,≤∗〉, with W = UH = UH′ . Then H,H ′ satisfy the
conditions of lemma 2.18 (since jU has no generators other than κ). Thus, by the theorem,
H = H ′.

Given W ∈ V [G] normal on κ (which is not necessarily simply generated), we can say
the following:

Lemma 2.22 Every normal measure W ∈ V [G] on κ extends a measure U = W ∩ V ∈ V

with ∆∗ /∈ U .

Proof. First, let us argue that U = W ∩ V belongs to V . By [?], it suffices to prove that
there are no new fresh unbounded subsets of cardinals in the interval

[
κ, (2κ)V

]
= [κ, κ+].

Thus, it suffices to prove the following pair of claims:
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Claim 4 P = Pκ does not add fresh unbounded subsets to κ.

Proof. The fact that there are no fresh unbounded subsets of κ follows essentially from the
fact that there exists a normal measure on κ in V [G]: Given a normal measure U ∈ V

with ∆ /∈ U , take any U∗ ∈ V [G] which extends it. Given a fresh unbounded A ⊆ κ, A =

jU∗ (A) ∩ κ and thus, by elementarity, A belongs to the ground model N of Ult (V [G] , U∗).
Now set kU : MU → N to be the function which maps [f ]U to [f ]U∗ . Then kU is a well
defined elementary embedding since U ⊆ U∗, and crit (kU) > κ by normality of U∗. Since
2κ = κ+ holds in N , kU maps the sequence of subsets of κ to itself, and thus every subset of
κ which belongs to N , already belongs to V . So the above set A belongs to V , which is a
contradiction. �

Claim 5 For every measurable (in V ) λ ≤ κ, Pλ doesn’t add fresh unbounded subsets of
λ+. In particular, Pκ does not add fresh subsets to λ+.

Proof. Let f ∈ V [G] be the characteristic function of a fresh unbounded subset of λ+. Let
f
∼

be a Pλ-name and assume that p ∈ P forces that f
∼

is fresh.
Let G ⊆ Pλ be generic over V . For every ξ < λ+, let pξ ∈ G be a condition which decides

f
∼

�ξ. For every ξ < λ+ there exists αξ < λ such that the support of pξ is bounded by αξ.
Let A ⊆ λ+ and α∗ < λ be such that |A| = λ+ and αξ = α∗ for every ξ ∈ A.

By shrinking A ⊆ λ+ even further (to a set of cardinality λ+), we can assume that there
exists q∗ ∈ Pλ such that, for every ξ ∈ A, pξ �α∗= q∗ �α∗ , and q∗ �[α∗,λ) is trivial.

Let h =
⋃
{g : ∃ξ < λ q∗ 
 f

∼
�ξ= g}. Clearly, h : λ+ → 2 is a function and q∗ 
 f

∼
= ȟ. �

Finally, let us argue that ∆∗ /∈ U . Assume otherwise. Since ∆∗ ∈ U , ∆∗ ∈ W and thus
θκ = [α 7→ θα]W < κ is the ordinal added by the forcing at stage κ in jW (P ). By κ − c.c.

of the forcing P = Pκ, there exists µ < κ and a condition p ∈ G such that p 
 θ∼κ < µ. In
particular,

X = {α < κ : p �α
 θ∼α < µ} ∈ W

Since supp (p) is bounded in κ,
and let α 7→ θ∼α be a function in V which maps each α ∈ ∆∗ to the Qα-name for θα.
there exists a Qκ-name for an ordinal θ∼κ = i (α 7→ θ∼α) (κ) below κ. Let p ∈ G

be a condition which decides the value of θ∼κ. Assume that p 
 θ∼κ = β. Then κ ∈
i ({α < κ : p �α
 θ∼α = β}) and thus–

X = {α < κ : p �α
 θ∼α = β} ∈ U
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However, this contradicts the density above p of the set of conditions q ∈ P = Pκ for which
there exists α ∈ X such that q �α
 θ∼α 6= β (it is dense since an Easton Support is used and
X is unbounded in κ). �

Lemma 2.23 Assume that there are not elements in (κ, crit(k))∩i(∆). Then crit(k) ∈ i(∆),
namely, it is the least element above κ in i (∆).

Remark 2.24 The assumption (κ, crit(k))∩i(δ) = ∅ holds in the natural case where P = Pκ

is an iteration of Prikry forcings. Indeed, assume, by contradiction, that there exists µ ∈
(κ, λ) ∩ i(∆). Then µ = k (µ), and thus in M [jW (G)], µ changes cofinality to ω. Therefore,
in V [G], cf (µ) = ω, and, in V , cf (µ) ≤ κ. The sequence witnessing this belongs to V ∩ (κN)

and thus, by our assumption on N , belongs already to N . This contradicts the measurability
of µ in N .

Proof. Denote λ = crit (k). Then for some h ∈ V and κ = β0 < β1 < . . . < βk,

λ = i(h) (κ, β1, . . . , βk)

By the definition of k, λ > κ.
We first prove that λ ∈ i (∆). Assume otherwise. We can assume without loss of

generality that for every ξ, ν1, . . . , νk below κ, h (ξ, ν1, . . . , νk) > ξ does not belongs to ∆:
this can be assumed by replacing the function h with the function h′ : [κ]n+1 → κ defined as
follows: For every ξ, η1, . . . , ηk, h′ (ξ, η1, . . . , ηk) equals h (ξ, η1, . . . , ηk) if h (ξ, η1, . . . , ηk) > ξ

is not measurable in V ; and else, h′ (ξ, η1, . . . , ηk) is an arbitrary non-measurable above ξ.
By our assumption,

i (h) (κ, β1, . . . , βk) = i (h′) (κ, β1, . . . , βk)

so we can replace h with h′. Since λ is regular (as a critical point of an elementary embed-
ding), we can assume, using a similar argument, that each h (ξ, ν1, . . . , νk) is regular.

We can assume that for every ξ, µ1, . . . , νk, there are no elements of ∆ in the interval
(ξ, h (ξ, ν1, . . . , νk)).

Let f ∈ V [G] be a function such that [f ]W = λ. Then–

[f ]W = λ < k(λ) = jW (h)
(
κ, d

(
[fβ0 ]W

)
, . . . , d

(
[fβk

]W
))

By the definition of W , there exists p ∈ G and r ∈ H such that–

p_r 
 i(f
∼
)(κ) < i(h)

(
κ, d (i (fβ1) (κ)) , . . . , d (i (fβk

) (κ))
)
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Recall that, for every 1 ≤ i ≤ k, there exists a condition in H forcing that d (i (fβi
) (κ)) = βi.

Thus by extending r inside H,

p_r 
 i(f
∼
)(κ) < i(h) (κ, β1, . . . , βk)

Since there are no measurables of N in the interval (κ, i(h) (κ, β0, . . . , βk)], we can find r′ ≥∗ r

inside H such that–

p 
 ∃α < i(h) (κ, β1, . . . , βk) , r′ 
 i(f)(κ) < α

and since P = Pκ is κ-c.c. and i(h) (κ, β1, . . . , βk) is regular, there exists α < i(h) (κ, β1, . . . , βk)

such that–
p_r′ 
 i(f

∼
)(κ) < α

Now apply k on both sides. By lemma 2.17,

M [jW (G)] � λ = [f ]W < k (α)

but α < i(h) (κ, β1, . . . , βk) = λ and thus λ < k(α) = α < λ, which is a contradiction. �

Remark 2.25 Assume that P = Pκ is an iteration of the one point Prikry forcings. A one
point Prikry forcing on a measurable α is a forcing, which depends on a normal measure U

on α, and is defined as follows: Conditions are of the form A where A ∈ U or ξ for some
ordinal ξ < α. The latter kind of condition cannot be extended. A condition of the form A

for A ∈ U can be extended in two ways: A direct extension is a condition B where B ∈ U

and B ⊆ A; a non-direct extension is of the form ξ where ξ ∈ A is an ordinal.
We argue that in this case, the question whether (κ, crit(k))∩ i(∆) 6= ∅, and, as a result,

the value of crit(k), depend of the choice of H:

1. Denote by µ the first element above κ in i(∆). Assume first that H is chosen such
that the condition on coordinate µ is a measure one set. In this case, µ = crit(k).
Indeed, crit(k) < µ cannot hold, since then (κ, crit(k)) ∩ i(∆) = ∅ which implies, by
the last lemma, that µ = crit(k). And µ < crit(k) cannot hold since then k(µ) = µ.
Denote by µ0 < µ the one point added below µ in jW (G). Then H at coordinate µ has
a condition which is incompatible with µ0 (by shrinking the large set and applying a
density argument). Thus µ = crit(k).

2. Denote now by µ the least element in i(∆), for which H does not specify the one-point
element added to it. We argue that crit(k) = µ, even though µ doesn’t have to be the
least element above κ in i(∆).
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Repeat the proof of the last lemma, and note that the ≤∗ forcing in the interval
(κ, µ) is trivial, since no condition in this interval can be non-trivially extended.
This replaces the assumption that there are no elements of i (∆) in the interval
(κ, i(h) (κ, β1, . . . , βk)). Therefore, µ = crit(k).

3 Easton Support Iterations of Prikry Forcings

Let us deal here with an Easton support iteration P of the Prikry forcings over a set ∆ of a
measurable length κ. Let U be a normal ultrafilter over κ in V with ∆ 6∈ U . Let G ⊆ P be
a generic and W be a normal ultrafilter in V [G] which extends U .

3.1 On jW (κ) > jU(κ)

Clearly, jW (κ) ≥ jU(κ). Our interest here will be in situations when a strict inequality holds.
Note such phenomenon is impossible with the full or with the non-stationary support.

Start with the following simple observation:

Proposition 3.1 The set

{jW (f)(κ) | f : κ → κ, f ∈ V }

is unbounded in jW (κ).
Hence, k′′jU(κ) is unbounded in jW (κ), where k([f ]U) = [f ]W is the embedding defined in the
section 1.

Proof. P satisfies κ−c.c. Hence for every g : κ → κ in V [G] there is f : κ → κ in V which
dominates it, i.e., for every ν < κ, g(ν) < f(ν).
�

Let us present a first example of a situation where jW (κ) > jU(κ).

Definition 3.2 (W. Mitchell) A cardinal κ is called µ−measurable iff there exists an exten-
der E over κ such that Eκ ∈ ME, where Eκ = {A ⊆ κ | κ ∈ jE(A)}.

Note that we can use a witnessing extender E with two generators only - κ and the ordinal
η < 22

κ which codes Eκ. The ultrapower by such extender is closed under κ−sequences.
The next lemma is obvious:

Lemma 3.3 Suppose that κ is µ−measurable and E is an extender witnessing this. Then
jEκ(κ) < jE(κ).
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Proposition 3.4 Suppose that κ is µ−measurable and E is an extender witnessing this
which ultrapower is closed under κ−sequences. Let U = Eκ and ∆ ⊆ κ be a set of measurable
cardinals which is not in U . Force with an Easton support iteration P of the Prikry forcings
over ∆. Let G ⊆ P be a generic.
Then, in V [G], there is a normal ultrafilter W which extends U such that jW (κ) > jU(κ).

Proof. Construct W as in theorem 2.7 using E, i.e., i = jE and N = ME.
Then jU(κ) < jE(κ) = i(κ) = jW (κ).
�

Let us observe now that we need a µ−measurable in order to have jW (κ) > jU(κ),
provided V = K, where K denotes the core model.

Proposition 3.5 Assume ¬0¶. Suppose that V = K. Let U be a normal ultrafilter over κ

and ∆ ⊆ κ be a set of measurable cardinals which is not in U . Force with an Easton support
iteration P of the Prikry forcings over ∆. Let G ⊆ P be a generic.
Suppose that, in V [G], there is a normal ultrafilter W which extends U such that jW (κ) >

jU(κ).
Then κ is a µ−measurable in V . Moreover, U is a normal measure of a witnessing extender.

Proof. Suppose otherwise.
Consider jW � V .
By Mitchell [6], it is a normal2 iterated ultrapower of K = V by its measures and extenders.
Recall that W ∩ V = U , and so, U = {A ⊆ κ | A ∈ V, κ ∈ jW (A)}. The assumption that
U is not a normal measure of an extender which witnesses a µ−measurability of κ implies
then that U must be used first in this iterated ultrapower.

Apply now the arguments of [3] in KU the core model of MU . For every measurable
α, κ ≤ α < jU(κ), there will be a bound ηα (which depends on o(α)) on number of possible
applications of measures and extenders over α with their images, and, by the assumption
that there is no strong cardinals, ηα < jU(κ).
Let C ⊆ jU(κ) be the closure of the set {α | κ ≤ α < jU(κ), α is a measurable in KU}.
Then the continuation jW of jU cannot move any point of C. This implies that jU(κ) does
not move, and so, jU(κ) = jW (κ).
�

2Extenders with smaller indexes are used first.
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The situation changes if we do not assume V = K. Let us argue now that the consistency
strength of jW (κ) > jU(κ) is just a measurable which is a limit of measurable cardinals.

Proposition 3.6 Let V0 be a model of GCH with a measurable cardinal κ which is a limit
of measurable cardinals.
Then there is a cardinal preserving generic extension V of V0 which satisfies the following:
Let ∆ be an unbounded subset of κ consisting of measurable cardinals. Force with an Easton
support iteration P of the Prikry forcings over ∆. Let G ⊆ P be a generic.
There exists a normal ultrafilter U over κ in V and a normal ultrafilter W in V [G] which
extends U such that jW (κ) > jU(κ).

Proof. The idea is as follows. Let W be a normal ultrafilter over κ in V0 which concentrates
on non-measurable cardinals. Consider W 2 = W ×W and W 3 = W ×W ×W .
Let j1 = jW , j2 = jW 2 , j3 = jW 3 ,M1 = MW ,M2 = MW 2 ,M3 = MW 3 , κ1 = j(κ), κ2 =

j2(κ), κ3 = j3(κ). We have natural commuting embeddings j12 : M1 → M2, j23 : M2 → M3

and j13 : M1 → M3. Namely, j12(j1(f)(κ)) = j2(f)(κ), j23(j2(g)(κ, κ1)) = j3(g)(κ, κ1), etc.
Note that the critical point of j12, j13 is κ1 and of j23 is κ2. However there is an additional
way to embed M2 into M3. Define σ : M2 → M3 by setting σ(j1(f)(κ, κ1)) = j3(f)(κ, κ2).
Clearly, σ is elementary and its critical point is κ1 and it is moved to κ2.
The idea will be to force in order to extend W to a normal ultrafilter U such that

1. MU is a generic extension of M2,

2. W 3 extends to a κ−complete ultrafilter E with ME a generic extension of M3,

3. U is the normal ultrafilter which is strictly below E with the corresponding embedding
extending σ.

Now, κ2 < κ3 will imply jU(κ) < jE(κ), since jU(κ) = κ2 and jE(κ) = κ3.
Such construction was used in [2]. We refer to this paper for details. Let us only sketch

the argument.
We force a Cohen function fα : α → α for every inaccessible α ≤ κ using the iteration

with an Easton support.
Denote a generic object which produces such 〈fα | α ≤ κ, α is an inaccessible 〉 by G0.
Let V = V0[G0].
It is possible to extend all the embeddings, j1, j2, j3, j12, j13, j23, σ. We change one value
of fκ3 at κ by setting it to κ2. Let G3 be such generic over M3 Then, j3 : V0 → M3
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extends to j∗3 : V0[G0] → M3[G3]. Derive now U and E from j∗3 ,in V = V0[G0], by setting
U = {A ⊆ κ | κ ∈ j∗3(A)} and E = {B ⊆ κ3 | 〈κ, κ1, κ2〉 ∈ j∗3(B)}.

Finally we apply the construction of Section ?? to U and E to produce an extension W

of U in V [G].
�

Note that U produced in 3.6 can be picked to be the minimal in the Mitchell order,
which is not true about one of 3.4, where V = K. Let us argue that under rather strong
assumptions it is possible to find such U in K.

Proposition 3.7 Let U be a normal ultrafilter over κ. Suppose that the set

{α < κ | α is κ− strong }

is unbounded in κ. Force with P as above. Let G ⊆ P be a generic. Then, in V [G], there is
a normal ultrafilter W over κ such that

1. U ⊆ W ,

2. jU(κ) < jW (κ),
moreover, jW � V = k ◦ i, where

• i : V → N ,

• jU(κ) < i(κ),

• i, N satisfy the conditions of theorem 2.7.

Proof. Work in MU . Pick some α, κ < α < jU(κ) which is jU(κ)−strong. Let E ∈ MU be
an (α, jU(κ))−extender witnessing this. Set N to be the ultrapower of MU by E and let
i = jE ◦ jU . We have

α < jU(κ) ≤ jE(α) < jE(jU(κ)) = i(κ).

The rest is as above.
�

We do not know whether the assumption of 3.7 is really necessary. However it is possible
to show the following.
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Proposition 3.8 Suppose ¬0¶.
Assume V = K.
Let U be a normal ultrafilter over κ which is minimal in the Mitchell order.
Let P be an Easton support iteration of Prikry type forcing notions up to κ and G ⊆ P be a
generic.
Suppose that W is a normal ultrafilter in V [G] which extends U .

Then jU(κ) = jW (κ).

Proof. By W. Mitchell [6], jW � K is a normal iterated ultrapower of K by its measures and
extenders.
The minimality of U implies that it must be used first in this iteration.
Apply now the arguments of [3] in KU the core model of MU . For every measurable
α, κ ≤ α < jU(κ), there will be a bound ηα (which depends on o(α)) on number of possible
applications of measures and extenders over α with their images, and, by the assumption
that there is no strong cardinals, ηα < jU(κ).
Let C ⊆ jU(κ) be the closure of the set {α | κ ≤ α < jU(κ), α is a measurable in KU}.
Then the continuation jW of jU cannot move any point of C. This implies that jU(κ) does
not move, and so, jU(κ) = jW (κ).
�

We conjecture that the needed strength (for 3.8) is exactly

{α < κ | α is κ− strong } is unbounded in κ.

Thus, R. Schindler [7] extension of the Mitchell result can be used to argue that jW � K
is a normal iterated ultrapower of K by its measures and extenders. A missing part is an
extension of [3] beyond strongs which is likely to hold.

3.2 Properties of k

Let i : V → N be an elementary embedding as in theorem 2.7, and assume that W = UH

and k : N → M are as in lemma 2.15.
In the setting of iteration of Prikry forcings, much more can be said about the embedding

k : N → M . From remark 2.24, it follows that crit(k) is the least element in i(∆) above κ.
In particular, by elementarity, k(µ) ∈ jW (∆) in M , and thus a Prikry sequence is added to
k(µ) in jW (G).

Lemma 3.9 Denote µ = crit(k). Then µ appears in the Prikry sequence of k(µ).
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Remark 3.10 µ is not necessarily the first element in the Prikry sequence of k(µ). The
initial segment of this Prikry sequence below µ depends on the choice of H. For every finite
sequence t ∈ [µ]<ω, we can choose H ⊆ i(P )\κ such that t is an initial segment of the Prikry
sequence of µ. This way, in M [jW (G)], t will be an initial segment of the Prikry sequence
of k(µ) below µ.

Proof. Let t be the finite initial segment of the Prikry sequence of k(µ) below µ, and assume
that 〈ξ, η1, . . . , ηl〉 7→ t(ξ, η1, . . . , ηl) is a function in V , such that–

t = i (〈ξ, η1, . . . , ηl〉 7→ t(ξ, η1, . . . , ηl)) (κ, β1, . . . , βl)

for some generators β1, . . . , βl of i. For every ξ < κ, let s(ξ) = min{∆ \ (ξ + 1)}, so
[ξ 7→ s(ξ)]W = µ. In V [G], define, for every ξ < κ,

µ(ξ) = the first element above t (ξ, d (fβ1) (ξ), . . . , d (fβl
) (ξ)) in the Prikry sequence of s(ξ)

and, if t (ξ, d (fβ1) (ξ), . . . , d (fβl
) (ξ)) is not an initial segment of the Prikry sequence of s(ξ),

set µ (ξ) = 0.
It suffices to prove that [ξ 7→ µ(ξ)]W = µ.
Assume first that η < µ. Work in N [G]. Since H is ≤∗-generic, it meets an element

q ∈ i(P ) \ κ, for which Aq
µ ⊆ µ \ (η + 1). Since q ∈ H, we can assume that tqµ is an initial

segment of t: Indeed, t, tqµ are compatible sequences, since, for any p ∈ G which forces that
q ∈ H and decides the value of tqµ, the condition k (p_q) = p_k(q) belongs to jW (G), and
decides an initial segment, below µ, of the Prikry sequence of k(µ). By our assumption,
this initial segment is contained in t, and p_k(q) forces that every possible extension of it is
above η. Thus, in M [jW (G)], each element in the Prikry sequence of k(µ) after t is strictly
above η.

The argument given in the previous paragraph also shows that for every q ∈ H, tqµ is
either empty or equals to t: As mentioned, it must be an initial segment of t. Let us argue
that if it is proper, then it is empty. Apply the above paragraph for η = max(t). Then by
direct extending q inside H, it forces that the element after tqµ in the Prikry sequence of µ
is strictly above η. By applying k : N → M , there exists a condition in jW (G) which forces
that the Prikry sequence of k(µ) has an initial segment tqµ, followed only by elements above
η. So tqµ cannot be a proper initial segment of t.

Assume now that η < [ξ 7→ µ(ξ)]W . Write η = [f ]W and assume that for every ξ < κ,

f(ξ) < µ(ξ) < s(ξ)
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Let p ∈ G be a condition which forces this. Work in N [G]. Take q ∈ H such that tqµ = t.
Then i(p)_q = p_q forces that i(f

∼
)(κ) is below the first element above t in the Prikry

sequence of µ. Thus, its value can be decided by taking a direct extension. So, by direct
extending q inside H we can assume that–

p 
 ∃α < µ, q 
 i (f
∼
) (κ) < α

and thus there exists α < µ in V , such that–

p_q 
 i(f)(κ) < α

Thus, in M [jW (G)], η = jW (f)(κ) < k(α) = α < µ, as desired. �

In the next subsection we will decompose the embedding k to an iterated ultrapower of
N . We now demonstrate the first step in the iteration:

Lemma 3.11 Let µ = crit(k) and let Uµ = {X ⊆ µ : µ ∈ k(X)} ∩N . Then Uµ ∈ N .

Proof. For every ξ < κ, denote by Wξ the measure in V [Gξ] used to singularize ξ in the
Prikry forcing at stage ξ in the iteration. Let Uξ = Wξ ∩ V . We first argue that there exists
a set F ∈ N of measures on µ, with |F| < µ, such that, for some p ∈ G and q ∈ H,

(1) p_q 
 i (ξ 7→ U∼ξ) (µ) ∈ F

Indeed, let α∼ be a jU(P )-name for the index of i (ξ 7→ U∼ξ) (µ) in a prescribed well order of
the normal measures µ carries in N . Work in N [G]. For some q ∈ H, there exists an ordinal
β such that q 
 α∼ = β. Thus, by κ− c.c. of the forcing i(P )µ = Pκ, there exist p ∈ G and a
set S ⊆ 22

µ of ordinals with |S| < µ, such that p_q 
 α∼ ∈ S. In particular, p_q forces that
i (ξ 7→ U∼ξ) (µ) belongs to F , where F is the set of measures on µ indexed in S.

Now apply k on equation (1), and work in M [jW (G)]. Since |F| < µ, it follows that
there exists a measure F ∈ F such that–

jW (ξ 7→ Uξ) (k (µ)) = k (F )

so it suffices to argue that F = {X ⊆ µ : µ ∈ k(X)} ∩ N . Fix X ∈ F . Write X =

i(g) (κ, β0, . . . , βk). Then–

jW (g)
(
κ, d

(
[fβ1 ]W

)
, . . . , d

(
[fβk

]W
))

∈ jW (ξ 7→ Uξ) (k(µ))
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Recall the function ξ 7→ s(ξ) = min (∆ \ (ξ + 1)), for which [ξ 7→ s(ξ)]W = k(µ). We can
assume that for every ξ < κ,

g (ξ, d (fβ1(ξ)) , . . . , d (fβk
(ξ))) ∈ Us(ξ)

and let p ∈ G be a condition which forces this. Then for strong enough q ∈ H,

p_q 
 i(g) (κ, β1, . . . , βk) ∈ i (ξ 7→ U∼ξ) (µ)

and thus by direct extending q further, we can assume that q forces that the first element
after t in the Prikry sequence of µ belongs to i(g) (κ, β1, . . . , βk) = X. Thus k(q) ∈ jW (G)

forces that the first element after t in the Prikry sequence of k(µ) belongs to k(X). By the
previous lemma, it follows that µ ∈ k(X), as desired. �

3.3 Description of jW �V

We now generalize the previous subsection, in order to completely decompose jW �V . For
technical reasons, we will assume that the measures used in the iteration P = Pκ to singu-
larize the measurables in ∆ are all simply generated; this is needed only in the proof of claim
7 which will be presented in the next subsection.

At each stage α ∈ ∆, let Q
∼α be the Pα-name for the Prikry forcing on α, using a

simply generated normal measure W∼ α on α. Denote U∼α = W∼ α ∩ V ∈ V . Let H∼α ⊆
(jU∼α (Pα) \ α,≤∗), H∼α ∈ V [Gα], be ≤∗-generic over MU∼α [Gα], such that W∼ α = (U∼α)H∼α

.
Let G ⊆ Pκ be generic over V .
Our goal is to prove the following theorem:

Theorem 3.12 Let H ∈ V [G] be a generic set for 〈i(P ) \ κ,≤∗〉 which satisfies (∗). Let
W = UH be the corresponding normal measure on κ extending U , and denote its ultrapower
embedding jW : V [G] → M [jW (G)] ' Ult (V [G] ,W ) for some model M . Then jW �V factors
to the form jW �V= k ◦ i for some elementary k : N → M .

Moreover, if P is an Easton support iteration, where at each step β ∈ ∆, Q
∼β is forced

to be Prikry forcing with a simply generated normal measure on β, then k is an iterated
ultrapower of N by normal measures and jW (κ) = i(κ).

This, in contrast to Full-Support and Nonstationary-Support iterations of Prikry forcings,
where, assuming GCH≤κ, jW �V is an iteration of V by normal measures only.

If all the measures considered, including W , are simply generated, jW �V is an iterated
ultrapower by normal measures only:
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Theorem 3.13 Assume that P is an Easton support iteration, where at each step β ∈ ∆,
Q
∼β is forced to be Prikry forcing with a simply generated normal measure on β. Then for
every simply generated measure W ∈ V [G] on κ, jW �V is an iteration of V by normal
measures. Moreover, if U = W ∩ V then jW (κ) = jU(κ).

We will prove theorems 3.13 and 3.12 simultaneously. Assume that H ∈ V [G] is a generic
for 〈i(P ) \ κ,≤∗〉 over N [G] with the property (∗). In the case where i = jU and N = MU ,
any generic for 〈i(P ) \ κ〉,≤∗〉 is such. Let W = UH ∈ V [G] be the corresponding normal
measure on κ. Let jW : V [G] → M [jW (G)] be the corresponding ultrapower embedding.

For every β ∈ B, let fβ be the function in V such that H forces that β = θi(f)(κ) =

d (i(f)(κ)) (such fβ ∈ V exists since H satisfies (∗)). The mapping β 7→ fβ is available in
V [G].

Recall the embedding k : N → M defined in lemma 2.15. In our context, it is defined as
follows:

k (i(f) (κ, β1, . . . , βk)) = jW (f)
(
κ, d

(
[fβ1 ]W

)
, . . . , d

(
[fβk

]W
))

then k is elementary, crit(k) > κ and jW �V= k ◦ i.
Denote κ∗ = i(κ). Define by induction a linear directed system 〈〈Mα : α ≤ κ∗〉, 〈jα,β : α <

β ≤ κ∗〉〉 such that:

1. M0 = N , j0 = i.

2. Successor Step: Assume that α < κ∗ and Mα has been defined. We will define
an elementary embedding kα : Mα → M , such that jW �V= kα ◦ jα. We denote
µα = crit (kα) and define–

Uµα = {X ⊆ µα : µα ∈ kα(X)} ∩Mα

We will prove that Uµα ∈ Mα and take Mα+1 ' Ult (Mα, Uµα). We also take jα,α+1 : Mα →
Mα+1 to be the ultrapower embedding jMα

Uµα
, and jα+1 = jα,α+1 ◦ jα.

3. Limit Step: For every limit α ≤ κ∗, the system 〈Mβ : β < α〉, 〈jβ,γ : β < γ < α〉 is
linearly directed, and we take direct limit to form the model Mα and the embedding
jα : V → Mα.

For every α < κ∗, define kα : Mα → M as follows:

kα (jα (f) (κ, j0,α(β1), . . . , j0,α (βl) , µα1 , . . . , µαk
)) = jW (f)

(
κ, d

(
[fβ1 ]W

)
, . . . , d

(
[fβl

]W
)
, µα1 , . . . , µαk

)
for every f ∈ V , β1, . . . , βl generators of i and α1 < . . . < αk < α.

Our goal is to prove by induction on α < κ∗ the following properties:
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(A) kα : Mα → M is an elementary embedding, and jW �V= kα ◦ jα.

(B) µα is measurable in Mα. Moreover, it is the least measurable in jα (∆), which is greater
or equal to sup{µβ : β < α}, and whose cofinality is above κ in V .

(C) µµα appears in the Prikry sequence of kα (µα).

(D) Let Uµα be defined in V [G] as above. Then Uµα ∈ Mα is a normal measure which
concentrates on µα \ jα (∆). Moreover,

kα (Uµα) = jW (δ 7→ Uδ) (kα (µα))

where, for every δ ∈ ∆, Uδ = Wδ ∩ V , for Wδ which is the measure used in the Prikry
forcing at stage δ in the iteration P .

After that, we will prove in lemma 3.26, that kκ∗ : Mκ∗ → M is the identity, and thus
jW �V= jκ∗ . This will conclude the proof of theorems 3.13 and 3.12.

Remark 3.14 We remark that kα is well defined is the sense that there is no α′ < α

and generator β of i, for which j0,α(β) = µα′ . Indeed, assume otherwise. Note that µα′ =

j0,α (β) ≥ j0,α′(β). Strict inequality is not possible here, since if j0,α′(β) < µα′ then j0,α′(β) =

j0,α(β) = µα′ , which is a contradiction. Thus, j0,α′ (β) = µα′ (which is, by itself, possible for
α′ < α - see remark 3.15), but then, applying jα′,α on both sides, we get–

j0,α(β) = jα′,α (µα′) > µα′

where the last inequality follows since µα′ = crit (jα′,α).

Remark 3.15 It is possible that a generator β of i is measurable in N and belongs to i(∆).
In this case, there exists α < κ∗ such that µα = β = j0,α(β). Let us observe the following
points regarding this situation:

1. β is still measurable in Mα, and is the critical point of kα. Also, β = µα appears in the
Prikry sequence of kα (µα) = kα (β) = d

(
[fβ]W

)
in M [jW (G)]. In particular, d

(
[fβ]W

)
is itself a measurable cardinal in M , by elementarity of kα. So d

(
[fβ]W

)
appears as a

first element in the Prikry sequence of [fβ]W , and also, has a Prikry sequence added
to it, in which µα = β appears (not necessarily as first element).
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2. The Prikry sequences, both of [fβ]W and d
(
[fβ]W

)
, have a final segment which is

generated by taking an iterated ultrapower with a single measure, over some finite
sub-iteration of 〈Mα : α < κ∗〉; The main difference will be that β = µα is part of this
final segment in the Prikry sequence of d

(
[fβ]W

)
, while d

(
[fβ]W

)
is not part of this final

segment in the Prikry sequence of [fβ]W . Indeed, it is not possible that d
(
[fβ]W

)
= µα′

for some α′ < κ∗, since such µα′ is not measurable in M – its measurability is destroyed
when moving to Mα+1 = Ult

(
Mα, Uµα′

)
– but d

(
[fβ]W

)
is measurable in M .

Properties (A) − (D) of kα, presented above, will be proved by induction on α < κ∗.
The proof of the inductive step at stage α < κ∗ will be carried out in subsection 3.5, using
the tools presented in [19] and [23]. Fixing α < κ∗, we can assume by induction that
kα′ : Mα′ → M and µα′ , Uµα′ , for α′ < α, satisfy properties (A) − (D). Denote by tα′ the
initial segment of the Prikry sequence of kα′ (µα′) below µα′ .

Definition 3.16 Fix α < κ∗ and a sequence of generators 〈β1, . . . , βl〉 for i. An increasing
sequence 〈α1, . . . , αk〉 below α is called a 〈β1, . . . , βl〉-nice sequence if there are functions
g1, . . . , gk, t1, . . . , tk in V, such that–

µα1 = jα1 (g1) (κ, j0,α1 (β1) , . . . , j0,α1 (βl))

tα1 = jα1 (tα1) (κ, j0,α1 (β1) , . . . , j0,α1 (βl))

Uµα1
= jα1 (F1) (κ, j0,α1 (β1) , . . . , j0,α1 (βl))

and, for every 1 ≤ i < k,

µαi+1
= jαi+1

(gi+1) (κ, j0,α1 (β1) , . . . , j0,α1 (βl) , µα1 , . . . , µαi
)

tαi+1
= jαi+1

(ti+1) (κ, j0,α1 (β1) , . . . , j0,α1 (βl) , µα1 , . . . , µαi
)

Uµαi+1
= jαi+1

(Fi+1) (κ, j0,α1 (β1) , . . . , j0,α1 (βl) , µα1 , . . . , µαi
)

Fix now α < κ∗. Assume by induction that properties (A) − (D) above hold for ev-
ery α′ < α. Fix also a sequence of generators 〈β1, . . . , βl〉 for i, and a 〈β1, . . . , βl〉-nice
sequence 〈α1, . . . , αk〉 below α. We define, in V [G], functions which can be used to represent
µαi

, tαi
, Uαi

. Assume that µαi
is the ni-th element in the Prikry sequence of kαi

(µαi
).

First, set–

µα1(ξ) = the n1-th element in the Prikry sequence of g1(ξ, d (fβ1(ξ)) , . . . , d (fβl
(ξ)))
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By induction, define, for every i < k,

µαi+1
(ξ) =the ni+1-th element in the Prikry sequence of

gi+1(ξ, d (fβ1(ξ)) , . . . , d (fβl
(ξ)) , µα1(ξ), . . . , µαi

(ξ))

and Uµαi
(ξ) = Wµαi (ξ)

∩ V . Here, given δ ∈ ∆, Wδ is the measure on δ used in the Prikry
forcing which was applied at stage δ in the iteration.

Claim 6 [ξ 7→ µαi
(ξ)]W = µαi

and
[
ξ 7→ Uµαi (ξ)

]
W

= kαi

(
Uµαi

)
.

Proof. We begin by proving that [ξ 7→ µαi
(ξ)]W = µαi

. We present the argument for i = 1.
Higher values of i ≤ k are proved similarly, using induction. Recall that–

µα1 = jα1 (g1) (κ, j0,α1 (β1) , . . . , j0,α1 (βl))

and by applying kα1 on both sides,

kα1 (µα1) = jW (g1) (κ, d
(
[fβ1(ξ)]W

)
, . . . , d

(
[fβl

(ξ)]W
)
)

By induction, µα1 is the n1-th element in the Prikry sequence of kα1 (µα1), and thus it is
represented as the n1-th element in the Prikry sequence of g1 (ξ, d (fβ1(ξ)) , . . . , d (fβl

(ξ))).
As for

[
ξ 7→ Uµαi (ξ)

]
W

= kαi

(
Uµαi

)
, this follows since, by induction,

kαi

(
Uµαi

)
= jW (δ 7→ Uδ) (kαi

(µαi
))

�

Let us argue that kα : Mα → M is elementary.

Lemma 3.17 kα : Mα → M is elementary.

Proof. Assume that x, y ∈ Mα, and let us prove, for example, that x ∈ y if and only if
k(x) ∈ k(y). Let f, g ∈ V , β1, . . . , βl and α1 < . . . < αk < α be such that–

x = jα(f) (κ, j0,α (β1) , . . . , j0,α (βl) , µα1 , . . . , µαk
) , y = jα(g) (κ, j0,α (β1) , . . . , j0,α (βl) , µα1 , . . . , µαk

)

Assume that α = α′ + 1 is successor (the limit case is simpler). For simplicity, we assume
also that αk = α′. Then x ∈ y if and only if–

µα′ ∈ jα′,α

(
{ξ < µα′ : jα′(f)

(
κ, j0,α′(β1), . . . , j0,α′(βl), µα1 , . . . , µαk−1

, ξ
)
∈

jα′(g)
(
κ, j0,α′(β1), . . . , j0,α′(βl), µα1 , . . . , µαk−1

, ξ
)
}
)
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which is equivalent to–

{ξ < µα′ : jα′(f)
(
κ, j0,α′(β1), . . . , j0,α′(βl), µα1 , . . . , µαk−1

, ξ
)
∈

jα′(g)
(
κ, j0,α′(β1), . . . , j0,α′(βl), µα1 , . . . , µαk−1

, ξ
)
} ∈ Uµα′

which, by the definition of Uµα′ , is equivalent to–

µα′ ∈ kα′
(
{ξ < µα′ : jα′(f)

(
κ, j0,α′(β1), . . . , j0,α′(βl), µα1 , . . . , µαk−1

, ξ
)
∈

jα′(g)
(
κ, j0,α′(β1), . . . , j0,α′(βl), µα1 , . . . , µαk−1

, ξ
)
}
)

namely kα(x) ∈ kα(y).
�

Let us describe now the main ideas behind the proof that µα = crit (kα) is measurable
in Mα. Note that this is not trivial since kα : Mα → M is not definable in Mα. The full
argument will be presented in lemma 3.23, but will require a technical theorem (theorem
3.18). Mainly we would like to follow the methods developed in [19] and [23], which deal
with nonstationary and full support iterations of Prikry forcings, respectively.

We consider the function f ∈ V [G], for which µα = [f ]W . We will prove that if µα is
not measurable in Mα, then µα = [f ]W ∈ Im (kα), contradicting the fact that µα = crit (kα).
For that, we first fix a function h ∈ V such that, for some sequence β1, . . . , βl of generators
of i, and for some nice sequence 〈α1, . . . , αk〉 below α,

µα = jα (h) (κ, j0,α (β1) , . . . , j0,α (βl) , µα1 , . . . , µαk
)

since µα = crit (kα), we can assume that for every ξ < κ,

f(ξ) < h (ξ, d (fβ1(ξ)) , . . . , d (fβl
(ξ)) , µα1(ξ), . . . , µαk

(ξ))

Pick a condition p ∈ G which forces this. For every ξ < κ, ~η = 〈η1, . . . , ηl〉 and ~ν =

〈ν1, . . . , νk〉, denote–

e (ξ, ~η, ~ν) = {r ∈ P\νk : there exists a bounded subset A ⊆ h (ξ, ~η, ~ν) such that r 
 f
∼
(ξ) ∈ A}

This set is ≤∗-dense open above conditions which extend p and force that–

(2) 〈d (fβ1(ξ)) , . . . , d (fβl
(ξ)) , µα1(ξ), . . . , µαk

(ξ)〉 = 〈~η, ~ν〉
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We would like to follow [19] and [23], and construct a condition p∗ ∈ G above p, such that,
very roughly3, for every ξ, ~η, ~ν as above, and for every extension r of p∗ which forces (2),

r �νk
 r\νk ∈ e (ξ, ~η, ~ν)

Essentially, such p∗ will have the following property: every extension r of it which forces that
equation (2) holds, forces also that f (ξ) belongs to a bounded subset A (ξ, ~η, ~ν) ⊆ h (ξ, ~η, ~ν)

(which depends only on p∗ and 〈ξ, ~η, ~ν〉, and not on the choice of the extension of p∗ which
forces (2)). In [19] and [23] the construction of such p∗ was done by a Fusion argument which
allows, in a sense, to absorb a lot of data into a single direct extension p∗ of p. Such a method
is not available in the Easton support iteration. We bypass this problem by constructing,
for every sequence 〈ξ, η1, . . . , ηl〉, a system of non-direct extensions of p,

〈p (ξ, η1, . . . , ηl, ν1, . . . , νk) : ν1 < . . . < νk < κ〉

and sets–
〈A (ξ, η1, . . . , ηl, ν1, . . . , νk) : ν1 < . . . < νk < κ〉

such that the following properties hold:

1. If p (ξ, η1, . . . , ηl, ν1, . . . , νk) forces (2), then it also forces that f
∼
(ξ) ∈ A (ξ, ~η, ~ν), which

is a bounded subset of h (ξ, ~η, ~ν).

2. For a set of ξ-s in W , p (ξ, d (fβ1(ξ)) , . . . , d (fβl
(ξ)) , µα1(ξ), . . . , µαk

(ξ)) belongs to G.

This suffices, since, by combining the above properties,

V [G] � {ξ < κ : f (ξ) ∈ A (ξ, d (fβ1(ξ)) , . . . , d (fβl
(ξ)) , µα1(ξ), . . . , µαk

(ξ))} ∈ W

and thus, in M [jW (G)],

µα = [f ]W ∈ [ξ 7→ A (ξ, d (fβ1(ξ)) , . . . , d (fβl
(ξ)) , µα1(ξ), . . . , µαk

(ξ))]W

=kα ( jα (〈ξ, ~η, ~ν〉 7→ A (ξ, ~η, ~ν)) (κ, β1, . . . , βl, µ1, . . . , µk) ) ⊆ Im (kα)

where the last inclusion follows since jα (〈ξ, ~η, ~ν〉 7→ A (ξ, ~η, ~ν)) (κ, β1, . . . , βl, µ1, . . . , µk) is a
bounded subset of µα = jα (h) (κ, β1, . . . , βl, µα1 , . . . , µαk

).
We will complete the missing details in the proof in lemma 3.23. Before that, we present

the proof of theorem 3.18.
3We omitted some of the details in the version described here, for sake of simplicity.
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3.4 Theorem 3.18 and its proof

We devote this subsection to the proof of the following theorem:

Theorem 3.18 Let p ∈ G be a condition. Assume that for every increasing sequence
〈ξ, ν1, . . . , νk〉, and for every ~η = 〈η1, . . . , ηl〉 above ξ, the set–

e (ξ, η1, . . . , ηl, ν1, . . . , νk) ⊆ P \ νk

is ≤∗ dense open above conditions in P \ νk which force that–

〈η1, . . . , ηl, ν1, . . . , νk〉 = 〈d (fβ1(ξ)) , . . . , d (fβl
(ξ)) , µα1(ξ), . . . , µαk

(ξ)〉

Then there are s < ω, a new sequence of generators β′
l, . . . , β

′
s of i which contains β1, . . . , βl,

and a system of extensions of p,

〈p (ξ, η1, . . . , ηs, ν1, . . . , νk) : η1, . . . , ηs < κ, ν1 < . . . < νk < κ〉

with the following properties:

1. There exists a set of ξ-s in W for which–

p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)
�µαk

(ξ)


p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)
\ µαk

(ξ) ∈

e
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)

2. There exists a set of ξ-s in W for which–

p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)
∈ G

(Intuitively, for the majority of values of 〈ξ, η1, . . . , ηs, ν1, . . . , νk〉, the condition
p (ξ, η1, . . . , ηs, ν1, . . . , νk) which we will construct, forces that–

〈d (fβ1(ξ)) , . . . , d (fβs(ξ)) , µα1(ξ), . . . , µαk
(ξ)〉 = 〈η1, . . . , ηs, ν1, . . . , νk〉

and its final segment belongs to e (ξ, η1, . . . , ηs, ν1, . . . , νk)).

Remark 3.19 When we extend a sequence of generators 〈β1, . . . , βl〉 to a sequence 〈β′
1, . . . , β

′
s〉

we will naturally identify the set e (ξ, η1, . . . , ηl), with–

e′ (ξ, η1, . . . , ηs) = e (ξ, ηi1 , . . . , ηil)

where ij is the index for which β′
ij
= βj, for every 1 ≤ j ≤ l.

Similarly, whenever a function g ∈ V is given, whose variables are ξ, η1, . . . , ηl, ν1, . . . , νk,
we abuse the notation and denote g (ξ, η1, . . . , ηs, ν1, . . . , νk) to mean g (ξ, ηi1 , . . . , ηil , ν1, . . . , νk).
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The proof of theorem 3.18 goes by generalizing the given sets e (ξ, η1, . . . , ηl, ν1, . . . , νk):

Definition 3.20 For every η1, . . . , ηl < κ, 1 ≤ i ≤ k and an increasing sequence 〈ξ, ν1, . . . , νi〉,
we define a set e (ξ, η1, . . . , ηl, ν1, . . . , νi) ⊆ P \ νi.
For i = k this is the set e (ξ, η1, . . . , ηl, ν1, . . . , νk) given in the formulation of the theorem.
Assume that 1 ≤ i < k. Work by recursion. Assume that for every ν < gi+1 (ξ, η1, . . . , ηl, ν1, . . . , νi),
the set e (ξ, η1, . . . , ηl, ν1, . . . , νi, ν) is defined. Denote gi+1 = gi+1 (ξ, η1, . . . , ηl, ν1, . . . , νi).
Let us define the set e (ξ, η1, . . . , ηl, ν1, . . . , νi), as follows: A condition q ∈ P \ νi belongs to
e (ξ, η1, . . . , ηl, ν1, . . . , νi) if and only if the following properties hold:

1. (A technical requirement) q �gi+1
decides the statements–

Fi+1 (ξ, η1, . . . , ηl, ν1, . . . , νj) = W∼ gi+1
∩ V , tqgi+1

= ti+1 (ξ, η1, . . . , ηl, ν1, . . . , νi)

Also, if q �gi+1
decides that tqgi+1

6= ti+1 (ξ, η1, . . . , ηl, ν1, . . . , νi), it also decides whether
one of the sequences is an initial segment of the other, and if so, which one it is. Finally,
if it forces that tqgi+1

is a strict initial segment of ti+1 (ξ, η1, . . . , ηl, ν1, . . . , νi), it also
forces that Aq

gi+1
⊆ gi+1 \max (ti+1 (ξ, η1, . . . , ηl, ν1, . . . , νi)).

2. (The essential requirement) If both statements in the technical requirement are decided
positively, there exists a sequence–

〈 q (ν) : ν < gi+1 (ξ, η1, . . . , ηl, ν1, . . . , νi) 〉

such that, for every ν < gi+1 (ξ, η1, . . . , ηl, ν1, . . . , νi) above νi, q(ν) ∈ P \ ν extends
q \ ν, and–

q 
 if µ
∼αi+1

(ξ) = ν, then q(ν) ∈ G \ ν and q(ν) ∈ e (ξ, η1, . . . , ηl, ν1, . . . , νi, ν)

Similarly, given 〈ξ, η1, . . . , ηl〉, define e (ξ, η1, . . . , ηl) to be the set of conditions q ∈ P \ ξ
which decide whether F1 (ξ, η1, . . . , ηl) = Wg1(ξ,η1,...,ηl)∩V , t1 (ξ, η1, . . . , ηl) = tqg1(ξ,η1,...,ηl), and,
assuming that it is decided positively, have a system of extensions–

〈q (ν) : ν < g1 (ξ, η1, . . . , ηl)〉

such that, for every ν < g1 (ξ, η1, . . . , ηl), q(ν) ∈ P \ ν, and–

q 
 if µ
∼α1(ξ) = ν then q(ν) ∈ G \ ν and q(ν) ∈ e (ξ, η1, . . . , ηl, ν)

If it is decided negatively, then q �g1 knows how to compare tqg1 and t1 (ξ, η1, . . . , ηl) as in the
second point above.
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By induction, we will argue that for every i ≤ k and ξ, η1, . . . , ηl, ν1, . . . , νi, the set
e (ξ, η1, . . . , ηl, ν1, . . . , νi) ⊆ P \ νi is ≤∗-dense open above conditions q ∈ P \ νi for which–

q 
 〈d (fβ1(ξ)) , . . . , d (fβl
(ξ)) , µ

∼α1(ξ), . . . , µ∼αi
(ξ)〉 = 〈η1, . . . , ηl, ν1, . . . , νi〉, and for

every 1 ≤ j ≤ i, Fj+1 (ξ, η1, . . . , ηl, ν1, . . . , νj) = W∼ gj+1(ξ,η1,...,ηl,ν1,...,νj) and

tj+1 (ξ, η1, . . . , ηl, ν1, . . . , νj) = tqgj+1(ξ,η1,...,ηl,ν1,...,νi)

The induction will be inverse: The basis, for i = k, is true, as it is known that the set
e (ξ, η1, . . . , ηl, ν1, . . . , νk) ⊆ P \ νk is ≤∗ dense–open above conditions q ∈ P \ νk which force
that–

〈d (fβ1(ξ)) , . . . , d (fβl
(ξ)) , µ

∼α1(ξ), . . . , µ∼αk
(ξ)〉 = 〈η1, . . . , ηl, ν1, . . . , νk〉

The inductive step is given in the following lemma:

Lemma 3.21 Fix η1, . . . , ηl < κ, 1 ≤ i < k and an increasing sequence 〈ξ, ν1, . . . , νi〉.
Denote gi+1 = gi+1 (ξ, η1, . . . , ηl, ν1, . . . , νi). Assume that for every νi+1 ∈ (νi, gi+1), the set–

e (ξ, η1, . . . , ηl, ν1, . . . , νi, νi+1) ⊆ P \ νi+1

is ≤∗-dense open above conditions q ∈ P \ νi+1 for which–

q 
 〈d (fβ1(ξ)) , . . . , d (fβl
(ξ)) , µ

∼α1(ξ), . . . , µ∼αi
(ξ), µ

∼αi+1
(ξ)〉 = 〈η1, . . . , ηl, ν1, . . . , νi, ν〉, and for

every 1 ≤ j ≤ i+ 1, Fj+1 (ξ, η1, . . . , ηl, ν1, . . . , νj) = W∼ gj+1(ξ,η1,...,ηl,ν1,...,νj) and

tj+1 (ξ, η1, . . . , ηl, ν1, . . . , νj) = tqgj+1(ξ,η1,...,ηl,ν1,...,νi)

then e (ξ, η1, . . . , ηl, ν1, . . . , νi) is ≤∗-dense open above conditions q ∈ P \ νi for which–

q 
 〈d (fβ1(ξ)) , . . . , d (fβl
(ξ)) , µ

∼α1(ξ), . . . , µ∼αi
(ξ)〉 = 〈η1, . . . , ηl, ν1, . . . , νi〉, and for

every 1 ≤ j ≤ i, Fj+1 (ξ, η1, . . . , ηl, ν1, . . . , νj) = W∼ gj+1(ξ,η1,...,ηl,ν1,...,νj) and

tj+1 (ξ, η1, . . . , ηl, ν1, . . . , νj) = tqgj+1(ξ,η1,...,ηl,ν1,...,νi)

Proof. Let q ∈ P \ νi be a condition which forces that–

d (fβ1(ξ)) , . . . , d (fβl
(ξ)) , µ

∼1(ξ), . . . , µ∼i(ξ)〉 = 〈η1, . . . , ηl, ν1, . . . , νi〉

and for every 1 ≤ j ≤ i, Fj+1 (ξ, η1, . . . , ηl, ν1, . . . , νj) = W∼ gj+1(ξ,η1,...,ηl,ν1,...,νj)

and tj+1 (ξ, η1, . . . , ηl, ν1, . . . , νj) = tqgj+1(ξ,η1,...,ηl,ν1,...,νi)
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Denote–
g = gi+1 (ξ, η1, . . . , ηl, ν1, . . . , νi)

Ug = Fi+1 (ξ, η1, . . . , ηl, ν1, . . . , νi)

t = ti+1 (ξ, η1, . . . , ηl, ν1, . . . , νi)

Assume that q �g forces that–
W∼ g ∩ V = Ug, t = t∼

q
g

(if not, we are done since q ∈ e (ξ, η1, . . . , ηl, ν1, . . . , νi)). Denote n = lh(t). We will now
apply the following claim:

Claim 7 Assume that p ∈ G is a condition, n < ω and g ∈ ∆ is measurable in V . Assume
that Ug is a normal measure on g in V , t is a finite sequence below g of length n, and–

p 
 t∼
q
g = t, W∼ g ∩ V = Ug

For every ν < g, assume that e (ν) ⊆ P \ ν is a Pν-name for a subset of P \ ν, which is
≤∗ dense-open above conditions which force that ν is the (n+ 1)-th element in the Prikry
sequence of g. Then there exists a direct extension p∗ ≥∗ p and a sequence 〈p (ν) : ν < g〉,
such that, for every ν < g,

p∗ 
if ν appears after t in the Prikry sequence of g, then p(ν) ∈ (G \ ν) ∩ e(ν)

and p∗ �ν
 p (ν) ≥∗ p∗ �[ν,g)
_〈t_〈ν〉, A∼

p∗

g \ ν〉_p∗ \ (g + 1) .

Proof. For every ν < g, consider the set–

d(ν) = {r ∈ P �[ν,g) : r ‖ ν ∈ A∼
p
g, and if r 
 ν ∈ A∼

p
g then

r 
 ∃s ≥∗ 〈t_〈ν〉, A∼
p
g \ ν〉_p \ (g + 1) , r_s ∈ e(ν)}

Then d(ν) ⊆ P �[ν,g) is ≤∗-dense open above p �[ν,g). Let Hg be the Pg-name, forced by p �g,
to be the ≤∗-generic subset of jUg (Pg) \ g, for which–

W∼ g = (Ug)H∼g

(such a generic exists since Wg is simply generated). Let q
∼

∈ Ult (V, Ug) be a Pg-name,
forced by p to be a condition in [ν 7→ d(ν)]Ug

∩H∼g. Let ν 7→ q
∼
(ν) ∈ P �[ν,g) be a function in

V such that [ν 7→ q
∼
(ν)]Ug

= q
∼

. Then we can assume that for a set of ν-s in Ug,

(3) p �ν
 q
∼
(ν) ∈ d (ν)
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and, by lemma 2.17, p �g forces that there exists a set C∼ ∈ Wg, such that for every ν ∈ C,

p �ν
_ q
∼
(ν) ∈ G∼ �g

By shrinking C if necessary, we can assume that every ν ∈ C also satisfies equation (3). Now
let us define the extension p∗ ≥∗ p, and, for every ν < g, the condition p(ν) ∈ P \ ν. First,
set–

p∗ �g= p �g

and, in V P �ν , set–
p(ν) �g= q

∼
(ν)

Work in an arbitrary generic extension for P �g, where p∗ �g belongs. For every ν ∈ C ∩ Ap
g

(which thus satisfies p �ν
_ q
∼
(ν) ∈ G �g), there exists s(ν) ∈ P \ g, s (ν) ≥∗ 〈t_〈ν〉, A∼

p
g \

ν〉_q \ (g + 1), such that p(ν) �g
_s(ν) ∈ e(ν). Set–

p∗ (g) = 〈 t∼
p
g, A∼

p
g ∩ C ∩

(
4ν<g, ν∈C∩Ap

g
A∼

s(ν)
g

)
〉

(the definition above is carried in V [G �g], so C∼ is available there).
Let p∗ \ (g + 1) = s (ν∼), where ν∼ is the (n+ 1)-th element in the Prikry sequence of g.

Finally, let–
p (ν) \ g = 〈t_〈ν〉, Ap∗

g \ ν〉_p∗ \ (g + 1)

where the above definition is possible if p �ν
_p(ν) �g
 ν ∈ A∼

p∗
g ; if not, let p (ν) \ g be

arbitrary.
This completes the definition of q∗ ≥∗ q and 〈p (ν) : ν < g〉. Let us prove that for every

ν < g,

p∗ 
if ν appears after t in the Prikry sequence of g, then p(ν) ∈ (G \ ν) ∩ e(ν)

and p∗ �ν
 p (ν) ≥∗ p∗ �[ν,g)
_〈t_〈ν〉, A∼

p∗

g \ ν〉_p∗ \ (g + 1) .

Fix ν < g and let G be a generic set for P which includes p∗, such that, in V [G], ν appears
after t in the Prikry sequence of g. In particular, ν ∈ C and thus q(ν) ∈ G �[ν,g). By the
definition of p(ν), and since p∗ ∈ G, q(ν) ∈ G �[ν,g), it follows that p(ν) ∈ G \ ν, as desired.

� of claim 7.

Apply claim 7 with respect to the set e (ξ, η1, . . . , ηl, ν1, . . . , νi, ν) ⊆ P \ ν (recall that
ξ, η1, . . . , ηl, ν1, . . . , νi are fixed), and direct extend q further, to a condition q∗ ≥∗ q, which
has a system of extensions–

〈q (ν) : ν < g〉
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as in the statement if the lemma.
It follows that, for every ν < g,

q∗ 
 if µ
∼αi+1

(ξ) = ν then q(ν) ∈ G \ νi and q(ν) \ ν ∈ e (ξ, η1, . . . , ηl, ν1, . . . , νi, ν)

Therefore 〈q(ν) : ν < g〉 witnesses the fact that q∗ ∈ e (ξ, η1, . . . , ηl, ν1, . . . , νk).
� of lemma 3.21.

We now proceed towards the proof of theorem 3.18. We use the same notations as in the
formulation of the theorem.

By induction, the following holds: For every ξ, η1, . . . , ηl, the set e (ξ, η1, . . . , ηl) ⊆ P \ ξ
is ≤∗ dense open above conditions q ∈ P \ ξ which force that–

〈d (fβ1(ξ)) , . . . , d (fβl
(ξ))〉 = 〈η1, . . . , ηl〉

and that–

F1 (ξ, η1, . . . , ηl) = W∼ g1(ξ,η1,...,ηl) and t1 (ξ, η1, . . . , ηl) = tqg1(ξ,η1,...,ηl)

We would like to perform another step, and move from conditions in P \ ξ to conditions
in P . This might require extending the sequence generators β1, . . . , βl. We do this in the
following lemma, which concludes the proof of theorem 3.18.

Lemma 3.22 There exists s < ω, a sequence of generators 〈β′
1, . . . , β

′
s〉 of i which extends

〈β1, . . . , βl〉, and a system of conditions–

〈p (ξ, η′1, . . . , η′s, ν1, . . . , νk) : η′1, . . . , η′s < κ, ξ < ν1 < . . . < νk〉

(all of them extend the condition p ∈ G given in the statement of theorem 3.18), such that,

{ξ < κ : p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)
�µαk

(ξ)


p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)
\ µαk

(ξ) ∈

e
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)

and-

p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)
∈ G}

Proof. Recall that W = UH is generated from the elementary embedding i : V → N . Let us
consider the set–

i (〈ξ, η1, . . . , ηl〉 7→ e (ξ, η1, . . . , ηl)) (κ, β1, . . . , βl) ⊆ i(P ) \ κ
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it is ≤∗-dense open in i(P ) \ κ, and thus meets a condition r ∈ H. Since r ∈ N , it can
be represented using a sequence of generators 〈β′

1, . . . , β
′
s〉, on which we can assume that it

contains 〈β1, . . . , βl〉. Let–

〈ξ, η′1, . . . , η′s〉 7→ r (ξ, η′1, . . . , η
′
s) ∈ P \ ξ

be a function in V , such that–

r = i (〈ξ, η′1, . . . , η′s〉 7→ r (ξ, η′1, . . . , η
′
s)) (κ, β

′
1, . . . , β

′
s)

Now, for every 〈ξ, η′1, . . . , η′s, ν1, . . . , νk〉, let us define the condition p (ξ, η′1, . . . , η
′
s, ν1, . . . , νk) ∈

P . We do this recursively, and define, for every 1 ≤ i ≤ k, a condition p (ξ, η′1, . . . , η
′
s, ν1, . . . , νi) ∈

P . Simultaneously, we prove that–

{ξ < κ : p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαi

(ξ)
)
�µαi (ξ)




p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαi

(ξ)
)
\ µαi

(ξ) ∈

e
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαi

(ξ)
)

and-

p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαi

(ξ)
)
∈ G}

This will complete the proof of the lemma, and thus, the proof of theorem 3.18.

• First, fix ξ, η1, . . . , ηs, and let us define p (ξ, η1, . . . , ηs). If p �ξ
 r (ξ, η1, . . . , ηs) ∈
e (ξ, η1, . . . , ηl), set p (ξ, η1, . . . , ηs) = p �ξ

_r (ξ, η1, . . . , ηs). Else, let p (ξ, η1, . . . , ηs) be
an arbitrary condition above p. We argue that–

{ξ < κ : p �ξ 
 r
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

))
∈ e

(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

))
and

p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

))
∈ G} ∈ W

Recall that r ∈ H was defined such that–

p 
 r ∈ i (〈ξ, η1, . . . , ηl〉 7→ e (ξ, η1, . . . , ηl)) (κ, β1, . . . , βl)

applying the embedding k : N → M and reflecting down modulo W gives–

{ξ < κ : p �ξ 
 r
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

))
∈ e

(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

))
} ∈ W

Finally, p 
 r ∈ H and thus p 
 k(r) ∈ jW (G), by lemma 2.17. Reflecting this down
gives–

{ξ < κ : p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

))
∈ G} ∈ W
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• Fix ξ, η′1, . . . , η
′
s, ν1 and let us define p (ξ, η′1, . . . , η

′
s, ν1). Denote g1 = g1 (ξ, η

′
1, . . . , η

′
s).

If p (ξ, η′1, . . . , η′s) �ξ
 p (ξ, η′1, . . . , η
′
s)\ξ ∈ e (ξ, η′1, . . . , η

′
s), then p (ξ, η′1, . . . , η

′
s) �ξ= p �ξ

decides the statements–

F1 (ξ, η1, . . . , ηl, ν1, . . . , νj) = W∼ g1 ∩ V , tqg1 = t1 (ξ, η1, . . . , ηl, ν1, . . . , νi)

and, if it decides them positively, it forces that there exists a sequence 〈q(ν) : ν < g1〉
witnessing this. Define–

p (ξ, η′1, . . . , η
′
s, ν1) = p (ξ, η′1, . . . , η

′
s) �ν1

_
q(ν1)

If p (ξ, η′1, . . . , η
′
s) �ξ1 p (ξ, η′1, . . . , η

′
s) \ ξ ∈ e (ξ, η′1, . . . , η

′
s) , or p (ξ, η′1, . . . , η

′
s) �ξ


p (ξ, η′1, . . . , η
′
s) \ ξ ∈ e (ξ, η′1, . . . , η

′
s) but the statements–

F1 (ξ, η1, . . . , ηl, ν1, . . . , νj) = W∼ g1 ∩ V , tqg1 = t1 (ξ, η1, . . . , ηl, ν1, . . . , νi)

are decided negatively, let p (ξ, η′1, . . . , η′s, ν1) be an arbitrary condition above p (ξ, η′1, . . . , η′s).
We argue that–

{ξ < κ : p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ)

)
�µα1 (ξ)




p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ)

)
\ µα1(ξ) ∈

e
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ)

)
and-

p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ)

)
∈ G}

First, by the previous point,

{ξ < κ : p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

))
�ξ
 p

(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

))
\ ξ ∈

e
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

))
} ∈ W

By the properties of the set e
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

))
, the condition–

p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

))
�ξ

decides the statements–

F1

(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

))
= W∼ g1 ∩ V

and–
t
p
(
ξ,d

(
fβ′1

(ξ)
)
,...,d

(
fβ′s

(ξ)
))

g1 = t1
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

))
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Claim 8 For a set of ξ-s in W , the above statements are decided in a positive way.
Before the proof of the claim, let us proceed with our argument. By the claim and
definition 3.20,

p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ)

)
= p

(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

))
�µα1 (ξ)

_
q (µα1(ξ))

and, by the properties of the set e
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

))
, the condition–

p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

))
forces that–

p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ)

)
= p

(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

))
�µα1 (ξ)

_
q (µα1(ξ)) ∈ G∼

and–

p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ)

)
\ µα1(ξ) = q (µα1(ξ)) ∈

e
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ)

)
Thus, for a set of ξ-s in W ,

{ξ < κ : p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

))
�ξ
 p

(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

))
\ ξ ∈

e
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

))
} ∈ W

Which finishes the second step. Thus, it remains to prove claim 8:

Proof. Let us prove first that–

{ξ < κ : p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

))
�ξ
 F1

(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

))
= W∼ g1∩V }

Assume otherwise. Then in M [jW (G)],

jW (〈ξ, η1, . . . , ηs〉 7→ F1 (〈ξ, η1, . . . , ηs〉)) (κ, j0,α (β′
1) , . . . , j0,α (β

′
s)) 6=[

ξ 7→ W
g1

(
ξ,d

(
fβ′1

(ξ)
)
,...,d

(
fβ′s

(ξ)
)) ∩ V

]
W

but both sides are equal to k1
(
Uµα1

)
, contradicting property (D) of the embedding

kα1 .
Now let us prove that–

{ξ < κ : p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

))
�ξ


t
p
(
ξ,d

(
fβ′1

(ξ)
)
,...,d

(
fβ′s

(ξ)
))

g1 = t1
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

))
}
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Assume otherwise. Then the condition s = jW
(
ξ 7→ p

(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)))
(κ)

forces that–

tskα1

(
µα1

) 6= kα1 (tα1) = tα1

Note that s ∈ jW (G) �kα1

(
µα1

) and tα1 is the initial segment of the Prikry sequence
of kα1 (µα1) below µα1 in M [jW (G)]. Thus, one of the sequences ts

kα1

(
µα1

) and tα1 is
a strict initial segment of the other. By the second requirement in definition 3.20
, s �kα1

(
µα1

) decides which one is an initial segment of the other. Now this yields a
contradiction:

1. If tα1 is a strict initial segment of ts
kα1

(
µα1

): Recall that s = kα1(s
′), where–

s′ = jα1 (〈ξ, η1, . . . , ηs〉 7→ p (ξ, η1, . . . , ηs)) (κ, j0,α1(β
′
1), . . . , j0,α1 (β

′
s))

Then s′ �µα1
forces that tα1 is a strict initial segment of ts

′
µα1

. Work over Mα1 .
Let γ < µα1 be an ordinal, forced by s′ �µα1

to be a bound on the first ordinal in
ts

′
µα1

\ tα1 (such a bound exists since the forcing jα1(P ) �µα1
is µα1-c.c. in Mα1).

Applying kα1 : Mα1 → M , γ < µα1 is an upper bound on the first ordinal in
ts
kα1

(
µα1

) \ tα1 . However, in M [jW (G)], this element is µα1 itself, which is strictly
above γ. A contradiction.

2. Else, ts
kα1

(
µα1

) is a strict initial segment of tα1 : Denote γ = max (tα1). Then,
by definition 3.20, s forces that the initial segment of the Prikry sequence of
kα1 (µα1) is ts

kα1

(
µα1

), followed by an element strictly above γ; in particular, tα1 is
not an initial segment of the Prikry sequence of kα1 (µα1) in M [jW (G)], which is
a contradiction.

� of claim 8.

• Assume now that 1 ≤ i < k is arbitrary, and for every ξ, η′1, . . . , η
′
s, ν1, . . . , νi, a con-

dition p (ξ, η′1, . . . , η
′
s, ν1, . . . , νi) is defined. Denote gi+1 = gi+1 (ξ, η

′
1, . . . , η

′
s, ν1, . . . , νi).

For every νi+1 < gi+1, let us define the condition p (ξ, η′1, . . . , η
′
s, ν1, . . . , νi, νi+1). If

p (ξ, η′1, . . . , η
′
s, ν1, . . . , νi) �νi
 p (ξ, η′1, . . . , η

′
s, ν1, . . . , νi)\νi ∈ e (ξ, η′1, . . . , η

′
s, ν1, . . . , νi)

and p (ξ, η′1, . . . , η
′
s, ν1, . . . , νi) �νi forces the statements–

Fi+1 (ξ, η1, . . . , ηl, ν1, . . . , νi) = W∼ gi+1
∩ V , tqgi+1

= ti+1 (ξ, η1, . . . , ηl, ν1, . . . , νi)
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then p (ξ, η′1, . . . , η
′
s, ν1, . . . , νi) �νi forces that there exists a sequence 〈q(ν) : ν < gi+1〉

witnessing this. In this case, define–

p (ξ, η′1, . . . , η
′
s, ν1, . . . , νi, νi+1) = p (ξ, η′1, . . . , η

′
s, ν1, . . . , νi) �νi+1

_
q(νi+1)

Else, let p (ξ, η′1, . . . , η
′
s, ν1, . . . , νi, νi+1) be an arbitrary condition which extends the

condition p (ξ, η′1, . . . , η
′
s, ν1, . . . , νi).

Let us argue now that–

{ξ < κ : p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαi

(ξ), µαi+1
(ξ)

)
�µαi+1 (ξ)




p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαi

(ξ), µαi+1
(ξ)

)
\ µαi+1

(ξ) ∈

e
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαi

(ξ), µαi+1
(ξ)

)
and-

p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαi

(ξ), µαi+1
(ξ)

)
∈ G}

We do this as in the previous point. First,

{ξ < κ : p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαi

(ξ)
)
�µαi (ξ)




p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαi

(ξ)
)
\ µαi

(ξ) ∈

e
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαi

(ξ)
)
} ∈ W

Thus, for a set of ξ-s in W , the condition–

p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαi

(ξ)
)
�µαi (ξ)

decides the statements–

Fi+1

(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαi

(ξ)
)
=

W∼ gi+1

(
ξ,d

(
fβ′1

(ξ)
)
,...,d

(
fβ′s

(ξ)
)
,µα1 (ξ),...,µαi (ξ)

) ∩ V

and–

t
p
(
ξ,d

(
fβ′1

(ξ)
)
,...,d

(
fβ′s

(ξ)
)
,µα1 (ξ),...,µαi (ξ)

)
gi+1

(
ξ,d

(
fβ′1

(ξ)
)
,...,d

(
fβ′s

(ξ)
)
,µα1 (ξ),...,µαi (ξ)

) = ti+1

(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαi

(ξ)
)

arguing as in claim 8, both statements are decided positively for a set of ξ-s in W .
Thus,

p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαi

(ξ), µαi+1
(ξ)

)
=

p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαi

(ξ)
)
�µαi+1 (ξ)

_
q
(
µαi+1

(ξ)
)
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and the condition q
(
µαi+1

(ξ)
)

is forced, by–

p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαi

(ξ)
)

to be in–

G \ µαi+1
(ξ) ∩ e

(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαi

(ξ), µαi+1
(ξ)

)
Therefore,

{ξ < κ : p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαi

(ξ), µαi+1
(ξ)

)
�µαi+1 (ξ)




p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαi

(ξ), µαi+1
(ξ)

)
\ µαi+1

(ξ) ∈

e
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαi

(ξ), µαi+1
(ξ)

)
and-

p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαi

(ξ), µαi+1
(ξ)

)
∈ G}

as desired.

� of lemma 3.22. � of theorem 3.18.

3.5 Properties of kα

In this subsection we complete the proof of properties (A) − (D) of kα. After that, we will
prove in lemma 3.26 that kκ∗ : Mκ∗ → M is the identity, and conclude the proof of theorems
3.13 and 3.12.

Lemma 3.23 µα = crit (kα) is measurable in Mα. Moreover, µα is the least measurable
above sup{µβ : β < α} which has cofinality above κ in V .

Proof. Write µ = [f ]W and µ = jα (h) (κ, j0,α(β1), . . . , j0,α (βk) , µα1 , . . . , µαm), for some
f ∈ V [G], h ∈ V , β1, . . . , βl generators of i and α1 < . . . < αk < α.

Since µ < kα (µ), we can assume that for every ξ < κ,

f (ξ) < h (ξ, d (fβ1(ξ)) , . . . , d (fβl
(ξ)) , µα1(ξ), . . . , µαk

(ξ))

and let p ∈ G be a condition which forces this. Given ξ, η1, . . . , ηl, ν1, . . . , νk, consider the
set–

e (ξ, η1, . . . , ηl, ν1, . . . , νk) = {r ∈ P \ νk : for some bounded subset A ⊆ h (ξ, η1, . . . , ηl, ν1, . . . , νk) ,

r 
 f
∼
(ξ) ∈ A}
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Then e (ξ, η1, . . . , ηl, ν1, . . . , νk) is ≤∗-dense open above conditions which extend p and force
that–

〈d (fβ1(ξ)) , . . . , d (fβl
(ξ)) , µα1(ξ), . . . , µαk

(ξ)〉 = 〈η1, . . . , ηl, ν1, . . . , νk〉

By Theorem 3.18, the sequence 〈β1, . . . , βl〉 can be extended to a sequence 〈β′
1, . . . , β

′
s〉, and

p can be extended to a system of conditions,

〈p (ξ, η1, . . . , ηs, ν1, . . . , νk) : ξ, η1, . . . , ηs < κ, ν1 < . . . < νk < κ〉

such that, for a set of ξ-s in W ,

p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)
�µαk

(ξ)


p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)
\ µαk

(ξ) ∈

e
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)

and–
p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)
∈ G

Assume now that 〈ξ, η1, . . . , ηs, ν1, . . . , νk〉 are given, such that–

p (ξ, η1, . . . , ηs, ν1, . . . , νk) �νk
p (ξ, η1, . . . , ηs, ν1, . . . , νk) \ νk ∈

e (ξ, η1, . . . , ηs, ν1, . . . , νk)

Let A∼ be a Pνk-name, forced by p (ξ, η1, . . . , ηs, ν1, . . . , νk) �νk to be a witness to the fact that
p (ξ, ~η, ~ν) \ νk ∈ e (ξ, ~η, ~ν). Namely it is a bounded subset of h (ξ, ~η, ~ν), and p (ξ, ~η, ~ν) \ νk 


f
∼
(ξ) ∈ A∼.

Let A (ξ, ~η, ~ν) be the set of ordinals γ < h (ξ, ~η, ~ν) such that, some r ≥ p (ξ, ~η, ~ν) �νk
forces that γ ∈ A∼. Since νk < h (ξ, ~η, ~ν), A (ξ, ~η, ~ν) is a bounded subset of h (ξ, ~η, ~ν). The
function 〈ξ, ~η, ~ν〉 7→ A (ξ, ~η, ~ν) lies in V .

By the results of theorem 3.18, there exists a set of ξ-s in W for which–

G 3p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)



f
∼
(ξ) ∈ A

(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)

Thus, in M [jW (G)],

[f ]W ∈
[
ξ 7→ A

(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)]

W
=

kα (jα (〈ξ, ~η, ~ν〉 7→ A (ξ, ~η, ~ν)) (κ, j0,α (β
′
1) , . . . , j0,α (β

′
s) , µα1 , . . . , µαk

)) ⊆ Im (kα)
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where the last inclusion follows since–

jα (〈ξ, ~η, ~ν〉 7→ A (ξ, ~η, ~ν)) (κ, j0,α (β
′
1) , . . . , j0,α (β

′
s) , µα1 , . . . , µαk

)

is a bounded subset of–

µα = jα (〈ξ, ~η, ~ν〉 7→ h (ξ, ~η, ~ν)) (κ, j0,α (β
′
1) , . . . , j0,α (β

′
s) , µα1 , . . . , µαk

)

which is crit (kα).
Thus we proved that µα ∈ Im (kα), which is a contradiction. �

Lemma 3.24 µα appears in the Prikry sequence added to kα (µα) in M [jW (G)].

Proof. In M [H], denote by t∗ the initial segment of the Prikry sequence of kα (µα) which
consists of all the ordinals below µα. Denote by n∗ the length of t∗. Let 〈ξ, ~η, ~ν〉 7→ t∗ (ξ, ~η, ~ν)

be a function in V such that–

t∗ = jα (〈ξ, ~η, ~ν〉 7→ t∗ (ξ, ~η, ~ν)) (κ, j0,α (β1) , . . . , j0,α (βl) , µα0 , . . . , µαk
)

(we assumed here that t∗ can be represented using the same generators as µα. If this is not
the case, modify the set of generators).

We can assume that for every 〈ξ, ~η, ~ν〉, t∗ (ξ, ~η, ~ν) is a sequence of length n∗. Since
kα (t

∗) = t∗,

[ξ 7→ t∗ (ξ, d (fβ1(ξ)) , . . . , d (fβl
(ξ)) , µα1(ξ), . . . , µαk

(ξ))]W = t∗

In V [G], denote, for every ξ < κ,

µα(ξ) =the (n∗ + 1) -th element in the Prikry sequence of

h
(
~ξ, d (fβ1(ξ)) , . . . , d (fβl

(ξ)) , µα1(ξ), . . . , µαk
(ξ)

)
Clearly [ξ 7→ µα(ξ)]W ≥ µα.

We argue that equality holds. We will prove that for every η < [ξ 7→ µα(ξ)]W , η < µα.
Assume that such η is given, and let f ∈ V [G] be a function such that [f ]W = η. Then we
can assume that for every ξ < κ,

f(ξ) < µα(ξ)

and let p ∈ G be a condition which forces this.
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For every ξ, ~η, ~ν, consider the set–

e (ξ, ~η, ~ν) = {r ∈ P \ νk : ∃γ < h (ξ, ~η, ~ν) , r 
 if t∗ (ξ, ~η, ~ν) is an initial segment of the

Prikry sequence of h (ξ, ~η, ~ν) , then f
∼
(ξ) < γ}

then e
(
~ξ, ~ν1, . . . , ~νk

)
is ≤∗ dense open above conditions which force that–

〈d (fβ1(ξ)) , . . . , d (fβl
(ξ)) , µα1(ξ), . . . , µαk

(ξ)〉 = 〈η1, . . . , ηl, ν1, . . . , νk〉

This, since, given a name for an element f
∼
(ξ) which is forced to be strictly below µα(ξ),

(which is the element which appears right after t∗ (ξ, ~η, ~ν) in the Prikry sequence of h (ξ, ~η, ~ν)),
the element can be decided by taking a direct extension.
By Theorem 3.18, the sequence 〈β1, . . . , βl〉 can be extended to a sequence 〈β′

1, . . . , β
′
s〉, and

p can be extended to a system of conditions,

〈p (ξ, η1, . . . , ηs, ν1, . . . , νk) : ξ, η1, . . . , ηs < κ, ν1 < . . . < νk < κ〉

such that, for a set of ξ-s in W ,

p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)
�µαk

(ξ)


p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)
\ µαk

(ξ) ∈

e
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)

and–
p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)
∈ G

Assume now that 〈ξ, ~η, ~ν〉 = 〈ξ, η1, . . . , ηs, ν1, . . . , νk〉 are given, such that–

p (ξ, ~η, ~ν) �νk
p (ξ, ~η, ~ν) \ νk ∈ e (ξ, ~η, ~ν)

Let γ
∼

be a Pνk-name, forced by p (ξ, η1, . . . , ηs, ν1, . . . , νk) �νk to an ordinal below h (ξ, ~η, ~ν),
such that p (ξ, ~η, ~ν) \ νk 
 f

∼
(ξ) < γ

∼
. Let γ (ξ, ~η, ~ν) be the supremum of the set of ordinals

τ < h (ξ, ~η, ~ν) such that, some r ≥ p (ξ, ~η, ~ν) �νk forces that γ
∼

= τ . Since νk < h (ξ, ~η, ~ν),
γ (ξ, ~η, ~ν) < h (ξ, ~η, ~ν). The function 〈ξ, ~η, ~ν〉 7→ γ (ξ, ~η, ~ν) lies in V .

By the results of theorem 3.18, there exists a set of ξ-s in W for which–

G 3p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)



if t∗
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)

is an initial segment of the Prikry sequence of

h
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)
, then

f
∼
(ξ) < γ

(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)
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Thus, in M [jW (G)], where indeed t∗ is an initial segment of the Prikry sequence of kα (µα),

[f ]W ∈
[
ξ 7→ γ

(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)]

W
=

kα (jα (〈ξ, ~η, ~ν〉 7→ γ (ξ, ~η, ~ν)) (κ, j0,α (β
′
1) , . . . , j0,α (β

′
s) , µα1 , . . . , µαk

)) < µα

as desired. �

Lemma 3.25 Let Uµα = {X ⊆ µα : µα ∈ kα(X)} ∩ Mα. Then Uµα ∈ Mα. Furthermore,
kα (Uµα) = jW (δ 7→ Uδ) (kα (µα)), where, for every δ ∈ ∆, Uδ = Wδ ∩V , for Wδ which is the
measure used in the Prikry forcing at stage δ in the iteration P .

Proof. We first prove that jW (δ 7→ Uδ) (kα (µα)) ∈ Im (kα). Then, we will prove that the
measure F ∈ Mα for which jW (δ 7→ Uδ) (kα (µα)) = kα(F ) equals to Uµα .

In order to prove that jW (δ 7→ Uδ) (kα (µα)) ∈ Im(kα), we prove that there exists a family
F ∈ Mα of measures on µα, with |F| < µα, such that jW (δ 7→ Uδ) (kα (µα)) ∈ kα(F ) = k′′

αF .
Fix, in V , an enumeration W of all the normal measures on measurable cardinals below

κ. For every 〈ξ, ~η, ~ν〉, let γ (ξ, ~η, ~ν) be the index of Uh(ξ,~η,~ν) in this enumeration. Note that
each measure Uh(ξ,~η,~ν) belongs to V , but the sequence 〈Uh(ξ,~η,~ν) : ξ, ~η, ~ν < κ〉 might be external
to V . So the function 〈ξ, ~η, ~ν〉 7→ γ (ξ, ~η, ~ν) doesn’t necessarily belong to V .

Fix 〈ξ, ~η, ~ν〉 and consider the set–

e (ξ, ~η, ~ν) ={r ∈ P \ νk : there exists a set of ordinals A of cardinality strictly smaller than

h (ξ, ~η, ~ν) , such that r �h(ξ,~η,~ν)
 γ (ξ, ~η, ~ν) ∈ A}

Then e (ξ, ~η, ~ν) ⊆ P \ νk is ≤∗-dense open, since P �h(ξ,~η,~ν) is h (ξ, ~η, ν)-c.c..
Now apply theorem 3.18 and argue as in the previous lemma: There exists (in V ) a

mapping 〈ξ, ~η, ~ν〉 7→ A (ξ, ~η, ~ν) such that, in M [jW (G)],[
ξ 7→ γ

(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)]

W
∈[

ξ 7→ A
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)]

W
=

k′′
α (jα (〈ξ, ~η, ~ν〉 7→ A (ξ, ~η, ~ν)) (κ, j0,α (β

′
1) , . . . , j0,α (β

′
s) , µα1 , . . . , µαk

))

In Mα, let F be the set of measures on µα which are indexed in the enumeration jα(W )

by an index in the set A = jα (〈ξ, ~η, ~ν〉 7→ A (ξ, ~η, ~ν)) (κ, j0,α (β
′
1) , . . . , j0,α (β

′
s) , µα1 , . . . , µαk

).
Note that |A| < µα and thus |F| < µα. Then jW (δ 7→ Uδ) (kα (µα)) is enumerated by the
ordinal– [

ξ 7→ γ
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)]

W
∈ k′′

αA
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and thus jW (δ 7→ Uδ) (kα (µα)) ∈ k′′
αF , as desired.

Let F ∈ Mα be a measure on µα such that–

jW (δ 7→ Uδ) (kα (µα)) = kα(F )

Let us argue that F = Uµα . It suffices to prove that F ⊆ Uµα . Fix a set X ∈ F . Assume
that–

X = jα (〈ξ, ~η, ~ν〉 7→ X (ξ, ~η, ~ν)) (κ, j0,α (β1) , . . . , j0,α (βl) , µα1 , . . . , µαk
)

(We assumed again that X can be represented using the same generators as µα. If this is
not the case, modify the set of generators of µα ). Then kα(X) ∈ jW (δ 7→ Uδ) (kα (µα)). As
in the previous lemma, let n∗ be the length of t∗, the initial segment of the Prikry sequence
of kα (µα) below µα. For every 〈ξ, ~η, ~ν〉, let–

e (ξ, ~η, ~ν) = {r ∈ P \ νk : r �h(ξ,~η,~ν)‖ X (ξ, ~η, ~ν) ∈ Uh(ξ,~η,~ν),

if it decides positively, then r �h(ξ,~η,~ν)
 A∼
r
h(ξ,~η,~ν) ⊆

X (ξ, ~η, ~ν) ; else, r �h(ξ,~η,~ν)
 A∼
r
h(ξ,~η,~ν) is disjoint

from X (ξ, ~η, ~ν) . Moreover, r �h(ξ,~η,~ν)‖ lh
(
trh(ξ,~η,~ν)

)
> n∗,

and if it decides positively, then there exists a bounded subset

A (ξ, ~η, ~ν) ⊆ h (ξ, ~η, ~ν) for which r �ξ,~η,~ν
 the (n∗ + 1) -th

element of trh(ξ,~η,~ν) belongs to A (ξ, ~η, ~ν)}

By theorem 3.18, there exists a larger set of generators β′
1, . . . , β

′
s and, for every 〈ξ, ~η, ~ν〉, a

condition p (〈ξ, ~η, ~ν〉), such that, for a set of ξ-s in W ,

p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)
�µαk

(ξ)


p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)
\ µαk

(ξ) ∈

e
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)

and–
p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)
∈ G

Let us argue first that for a set of ξ-s in W ,

p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)
�µαk

(ξ)

decides that–
lh
(
t
p
(
ξ,d

(
fβ′1

(ξ)
)
,...,d

(
fβ′s

(ξ)
)
,µα1 (ξ),...,µαk

(ξ)
)

h
(
ξ,d

(
fβ′1

(ξ)
)
,...,d

(
fβ′s

(ξ)
)
,µα1 (ξ),...,µαk

(ξ)
)
)

≤ n∗
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Indeed, assume otherwise. Let A∗ (ξ, ~η, ~ν) be the bounded subset of h (ξ, ~η, ~ν) which consists
of all the ordinals, which are forced by some extension of p (ξ, ~η, ~ν) �νk to be in A (ξ, ~η, ~ν)

(whenever p (ξ, ~η, ~ν) forces that the length of tp(ξ,~η,~ν)h(ξ,~η,~ν) is greater than n∗). Then, in M [jW (G)],

µα ∈ kα (jα (〈ξ, ~η, ~ν〉 7→ A∗ (ξ, ~η, ~ν)) (κ, j0,α (β
′
1) , . . . , j0,α (β

′
s) , µα1 , . . . , µαk

))

But this is a contradiction, since jα (〈ξ, ~η, ~ν〉 7→ A∗ (ξ, ~η, ~ν)) (κ, j0,α (β
′
1) , . . . , j0,α (β

′
s) , µα1 , . . . , µαk

)

is a bounded subset of µα.
Therefore, we can assume that–

p
(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)
�µαk

(ξ)

forces that–
lh
(
t
p
(
ξ,d

(
fβ′1

(ξ)
)
,...,d

(
fβ′s

(ξ)
)
,µα1 (ξ),...,µαk

(ξ)
)

h
(
ξ,d

(
fβ′1

(ξ)
)
,...,d

(
fβ′s

(ξ)
)
,µα1 (ξ),...,µαk

(ξ)
)
)

≤ n∗

Denote now p∗ =
[
ξ 7→ p

(
ξ, d

(
fβ′

1
(ξ)

)
, . . . , d

(
fβ′

s
(ξ)

)
, µα1(ξ), . . . , µαk

(ξ)
)]

W
. Then p∗ �kα(µα)

forces that µα ∈ A∼
p∗

kα(µα)
. By the definition of the sets e (ξ, ~η, ~ν), the set A∼

p∗

kα(µα)
is forced to

be either disjoint or contained in kα(X). Since kα(X) ∈ jW (δ 7→ Uδ) (kα (µα)), it cannot be
disjoint (again, by the definition of e (ξ, ~η, ~ν)). Therefore µα ∈ kα(X) and thus X ∈ Uµα , as
desired. �.

Finally, let us argue that jκ∗ = jW �V . Recall that κ∗ = i(κ), and note that κ∗ =

sup{µα : α < κ∗}.

Lemma 3.26 M = Mκ∗, jW (κ) = i(κ) and jκ∗ = jW �V .

Remark 3.27 In particular, if i = jU (namely W is simply generated) then jW (κ) = jU(κ).
On the other hand, possibly jU(κ) < i(κ), and then jW (κ) > jU(κ).

Proof. Define, similarly to kα : Mα → M , the embedding kκ∗ : Mκ∗ → M as follows:

kκ∗ (jκ∗ (f) (κ, j0,κ∗(β1), . . . , j0,κ∗ (βl) , µα1 , . . . , µαk
)) =

jW (f)
(
κ, d

(
[fβ1(ξ)]W

)
, . . . , d

(
[fβl

(ξ)]W
)
, µα1 , . . . , µαm

)
for every f ∈ V , β1, . . . , βl generators of i and α1 < . . . < αm < κ∗. Clearly crit (kκ∗) ≥ κ∗.
It suffices to prove that kκ∗ is the identity function.

Let τ be an ordinal, and let f ∈ V [G] be a function such that [f ]W = τ . By the κ-c.c.
of Pκ, there exists F ∈ V such that for every ξ < κ, f(ξ) ∈ F (ξ) and |F (ξ)| < κ. Therefore,
in M [jW (G)],

τ = [f ]W ∈ [F ]W = kκ∗ (jκ∗(F )(κ))
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But–
|jκ∗(F )(κ)| < jκ∗ (κ) = κ∗ ≤ crit (kκ∗)

so η ∈ Im (kκ∗) as desired. �

3.6 On existence of N

A natural question in view of the main results on the structure jW is whether always there
exists N, κN ⊆ N such that M is obtained from it by iterating normal measures only. We
do not know the answer in general. However, it turns out to be an affirmative provided some
anti large cardinal assumptions and V = K.

Proposition 3.28 Assume ¬0¶ and V = K.
Let U be a normal ultrafilter over κ and ∆ ⊆ κ be a set of measurable cardinals which is not
in U . Force with an Easton support iteration P of the Prikry forcings over ∆. Let G ⊆ P

be a generic.
Suppose that, in V [G], there is a normal ultrafilter W which extends U .
Then there are N, i : V → N which satisfy the conditions of theorem 2.7 such that jW � V =

k ◦ i and k is formed by iterating normal measures only, starting from N .

Proof. As in subsection 3.1, we analyze j := jW � K.
By elementarity, j : K → (K)MW and MW is a generic extension of (K)MW by an Easton
support iteration of Prikry forcings with normal measures in j(∆).

By Mitchell [6], j is an iterated ultrapower of K by its measures and extenders. Recall
that W ∩ K = U , and so, U = {A ⊆ κ | A ∈ V, κ ∈ jW (A)}. So, this iterated ultrapower
starts with U or with an extender F which normal measure is U .
Note that MF must be closed under κ−sequences. Otherwise, there will be a set of ordinals
a, |a| < κ which consists of generators and which is not in MF . The further Easton support
iteration of Prikry forcings will not be able to add such a. Thus, by our assumption, the
length of F must be below first measurable cardinal above κ in MF . The iteration of Prikry
forcings above κ does not add new bounded subsets below the first measurable > κ.

By the same reason, extenders used to continue the iteration must be κ−closed.
None of them can be used infinitely many times (or infinitely many extenders cannot be

used), since otherwise, ω−sequences which cannot be added by an Easton support iteration
of Prikry forcings, will be produced. It follows from the strong Prikry condition of the
forcing, see O. Ben-Neria [1].
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This leaves us with a finite iteration by κ−closed extenders (measures).
It is the first part of the iteration.
The rest consisting of iteration of normal measures, each of them is applied ω−many times.
Take N to be the first part of the iteration and i : K → N be the corresponding embedding.
�
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