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1 Introduction

Assume that k is a measurable cardinal, 2% = k. Let P = P, be an Easton support iteration
of Prikry-type forcings, and let G C P be generic over V. Assume that x is measurable in
V' [G], and let W € V' [G] be a normal measure on . Denote by jw: V [G] = M [jw(G)] ~
Ult (V [G],W). What can be said about W, and jy [v: V — M?

By a well known series of results in Inner Model theory, ju [v is an iterated ultrapower
of V', provided that the variety of large cardinals in the universe is limited. For instance, by
Mitchell [27], assuming that there is no inner model with a cardinal o with o(a)) = ™" and
V = K is the core model, ji [k is an iteration of K by normal measures. By a result of
Schindler [12], assuming that there is no inner model with a Wooding cardinal, jy [ is an
iteration of K by its extenders.

This question can be addressed in the following dual form: assume that i: V' — N is an
elementary embedding, definable in V| with crit(i) = , and let U = {X C k: k € i(X)} be
the normal measure on x derived from i. Can U be extended to a normal measure W € V [G],
such that (using the above notations) there exists an elementary embedding k: N — M for

2 The General Framework

Definition 2.1 An iteration (P,,Qp: a <k, < k) is called an Easton support iteration
of Prikry-type forcings if and only if, for every o < k and p € P,,

1. p is a function with domain o such that for every B < a, p | B € Pg, andp | B IF
p(8) € Qs.



2. If « < k is inaccessible, then supp(p) N« is bounded in o (supp(p) C « is the set of

indices v on which p(7y) is forced to be non-trivial).
Suppose that p,q € P,. Then p > q, which means that p extends q, holds if and only if:
1. supp(q) € supp(p).

2. For every B € supp(q), p | BIF p(B) >5 q(B) (where >z is the order of Qg).

3. There is a finite subset b C supp(q), such that for every B € supp(q) \b, p | B IF
p(B) >4 q(B) (where >3 is the direct extension order of Q).

If b =0, we say that p is a direct extension of q, and denote it by p >* q.
The following properties are standard (see [8] for example):

Lemma 2.2 For every A < k, P\ satisfies the Prikry property.

Lemma 2.3 For every A < k which is Mahlo, Py has the A — c.c..

Let U be a normal ultrafilter over k. Let (P,,Qp | o < Kk, 8 < k) be an Easton support
iteration of a Prikry type forcing notions. Suppose that the following hold:

1. There exists an unbounded subset A C k, A ¢ U, such that, for every a < &,

(a) a € A — IFp, Q, is nontrivial.

(b) a ¢ A — IFp, Q, is trivial.
2. For every a < &, IFp, (Qa, <)) is a—closed.

3. For every a € A, IFp, |Qq| < min(A\ o+ 1).

Let G be a generic subset of P = P,. We would like to analyze the normal measures on
k in V [G] extending U. The standard way to do so appears in [8], we present it here for

sake of completeness.

Lemma 2.4 There exists a normal measure U* € V' [G] on k which extends U.

Proof. Let (Ay: a < k') be an enumeration, in V, of P = P.-names, such that every
X € (P(r)" has the form (Aa)¢ for some oo < £, Such list of names exists since P = P

is k — c.c.. Now, construct, in V' [G], a <*-increasing sequence of conditions (g,: a < k%),
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such that, over N [G], qo || £ € ju (Aa). Such a sequence exists since V' [G] F " (jy(P) \ k, <*
) is kT — closed.”
Let (qq: a < kKT) be a P-name for the above sequence. Now, define U* D U as follows:

For every a < 7, (44), € U* if and only if there exists p € G and o < k™ such that—

P qaFrEi(A)

We argue that U* defined above is a normal measure which extends U.
Assume that § < r and (X,: a <) is a P,-name for a partition of x in V' [G]. For every
a < ¢, define—
Yo={8<r":TIp€ P plr Xo= 45}

Since P is k — c.c., |Y,| < k. Denote-
v =%
a<d

Then Y C k' is a bounded subset. Pick a* < % high enough which bounds Y. Let us
argue that there exists p € G and a unique § < ¢ such that—

P g -5 € G (4p)

and thus (Ag), € U*.
Work in N [G]. Note that (Az: 8 € Y) covers the sequence (X, : a < d). Since ¢+ is <*

above any ¢z for f €Y,
V¢ < a, go

k€ i(Xe)

Since (i (X¢) : £ < 0) is a partition of i(k), there exists a unique £* < § such that ¢, Ik €
i (Ag+). Let p € G be a condition forcing this. Then p™ g o« IF & € i (X¢), as desired.
A similar argument shows that U* is normal. Indeed, given a P.-name for a regressive

function f: k — k, define, for every a < k,

Xo={¢<k: f(§ =a}

and proceed as before to find a unique o < x such that X, € U*. [J

In particular, U can be extended to a normal measure U* € V' [G], such that the ultra-
power embedding jy«: V' [G] — M [ju~(G)] satisfies that jy« [v= k o jy, for an embedding
k: My — M which satisfies crit(k) > x. Indeed, define k ([f],;) = [f],. for every f: k =V
in V.



An immediate question is whether this can be generalized further. Given an elementary
embedding i: V' — N with critical point &, definable in V', can U = {X C k: k € i(X)} be
extended to a normal measure W € V [G] such that jw [y= ko, for some k: N — M with
crit(k) > k7

The first step is to use the embedding ¢: V' — N to extend U.

Lemma 2.5 Assume that i: V. — N is an elementary embedding definable in V, with
crit(i) = Kk, such that |i(k)| = kT, Kk ¢ i(A), NCV and VN "N C N. Denote-

U={XCkr:rei(X)}
Then G is i(P) [.= P-generic over N, and:

1. For every q € i(P)\ K, there is H € V' [G] with ¢ € H, which is (i(P) \ k, <* )-generic
over N [G].

2. Given such H € V' [G], define-

Un ={(A)g: A is a P— name for a subset of r, and there exists

p € Gx H such that plF k€ i(A)}

Then Uy is a normal, k—complete ultrafilter on k which extends U.

Proof.

1. We can enumerate, in V' [G], all the maximal antichains in (i(P) \ k, <*) with order
type kT, by i(k)-c.c. of the forcing, and since V' [G] F |i(k)| = kT. Note that k & i (A),
so in the sense of N [G], the forcing (i(P) \ k, <*) is more than k-closed. Moreover,
since VE®N C N, and P = P, is k—c.c.,, V[G] E <*N [G] C N [G]. Therefore, every
sequence of length « of conditions in i(P) \ x which belongs to V' [G] belongs to N [G]
as well. Thus, in the sense of V' [G], the forcing (i(P) \ k, <*) is k*-closed.

Starting from any condition in i(P) \ k, we can construct (in V [G]) a sequence of
direct extensions of it, meeting every maximal antichain. This sequence generates a
<*-generic over N |G| for i(P) \ k, which belongs to V [G].

2. First, we prove that W = Uy is a normal, k-complete ultrafilter on x which extends U.
It is not hard to verify that W is a filter. We prove that W is a k-complete ultrafilter.
Assume that (X,: a < §) is a partition of &, for some § < k. Work in N [G]. Let
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D C i(P) \ k be the <*-dense open set of conditions which decide the unique o < ¢
for which x € i (X,). Then such a statement is forced by some 7 € H. Let p € G be a
condition which forces that r has this property, and also decides the value of . Then
prlk k € i(X,) and thus X, € W. Normality of W follows by a similar argument,
using the dense set of conditions deciding the value of i( f)(k) for a given regressive

~Y

function f: kK — k. The argument works since we don’t force over x in N.

In general, the settings of lemma 2.5 are not enough ensure that jy,, [v= k ot for some
k with crit(k) > k. For instance, given a normal measure U on x in V with A ¢ U, the
embedding ¢ = jy2 satisfies the settings of lemma 2.5, but cannot be used to extend U to a
measure Uy for which jy,, = ko for some embedding k with crit(k) > x. This follows since

1 fails to satisfy clause 3 in the next claim:

Claim 1 Assume that U € V is a normal measure on k, W € V' [G] is a normal measure
which extends U, i: V' — N is an elementary embedding and jy [y= ko for some k: N —
M with crit(k) > k. Then—

1. {XCr:rei(X)}=U.
2. i(k)| = k™.
3. {i(f)(k): feV, f:k— Kk} is unbounded in i(k).

Proof.

1. {X C k:k € i(X)} = U: Indeed, let X C x in V with x € i(X). By applying
k: N — M it follows that k € jy (X) and hence X € W. Since X € Vand U = WNV,
it follows that X € U.

2. |i(k)| = k™ This holds since, in V' [G], |jw (k)| = 2% = kT (since, in V, 2% = k1), and
i(r) < jw(k).

3. {i(f)(r)|f : K — Kk} is unbounded in i(k): Given 5 < i(k), let f € V [G] be a function
such that [f],,, = k (B). Since k (8) < k (i(k)) = jw(k), we can assume that f: Kk — k.
The Easton support ensures that there exists g: kK — k in V' which dominates f. Thus
i(g9) (k) > [ (indeed, by applying k: N — M on both sides, this is equivalent to
Jw(g)(k) > k(B) = [fly, which holds, since g dominates f. Note that, when applying
k, we used the fact that crit(k) > k).



0

Remark 2.6 M. Magidor gave the following remark, that allows to reduce the assumptions
imposed on ¢ above: Assuming that N C V and i: V' — N is definable in V' [G], it follows
that N is a class of V. Indeed, pick a formula ¢ and a parameter a € V [G] such that
for every z,y in V., ¢(x,y,a) holds in V' [G] if and only if i(x) = y. For every ordinal «
pick a condition p, € G which decides the value of the set (%(a))N, which is the set y
for which ¢ (V,,y,a) holds. Since P is a set forcing, there exists p* € G such that, for

unboundedly many ordinals «, p, = p*. Then N can be defined as a class of V' using p*,
N =U{y: Ja € ON, p" Ik ¢ (Va,y, a)}-

Theorem 2.7 Assume that A C k is unbounded, U € V is a normal measure on k with
A¢U, andi: V — N is an elementary embedding, definable in V', such that the properties

of lemma 2.5 and claim 1 hold, namely:
1. crit(i) = k.
2.VN "N CN.
3. k¢ i(A).
4. U={X Cr:rei(X)}.
5. |i(k)] = kt.
6. {i(f)(k): fE€V, f: k— Kk} is unbounded in i(k).

Assume also that every element of N has the form i(f) (51,...,0) for some f € V and
f1 < ... < B < i(k). Then there exists a measure W € V [G] extending U, such that,
denoting Ult(V [G], W) ~ My [jw(G)], there exists k: N — My, with crit(k) > k such that

Jw lv=Fkoi.

Theorem 2.7 will be proved by a sequence of lemmata, concluded in lemma 2.15. The
main idea in the proof of theorem 2.7 is to add representing functions for all the generators

of i above k. This is needed since jy [y has a single generator k.

Definition 2.8 An ordinal 3 is called a generator of i: V' — N if there are no n < w,
ordinals i, ..., 3, below 8 and a function f € V such that 8 =i (f) (51,...,Fn)-



In the next lemma we construct a function a — 6, in V' [G], which will be utilized,

alongside functions in V', to represent the generators of ¢ in Ult (V [G], W).

Lemma 2.9 There exists a P,-name for a sequence of ordinals, (0o: o € A), such that, for
every 8 < k and p € P,, there is ay < k such that for every a > « there exists p* >* p such
that p* I 0, = f.

Remark 2.10 There are natural candidates for the ordinals (f,: a € A) in most of the
common examples. For instance, if P = P, is an iteration of Prikry forcings, we can take
0, = the first element in the Prikry sequence added to «; If P, is an iteration of Cohen

forcings, take 6, to be the least element in the Cohen subset added to «.

Proof. Fix a cardinal o < k. Let 7, < s be the least ordinal such that P [, is not
a — c.c.. We will argue below that such 7, < k exists, but first, let us show that this suffices:

Pick an unbounded subset X C «, such that, for every a, o’ € X,
a<d = 7, < Ty

(for instance, let X be the club of closure points of the function o +— 7,). Enumerate

X = (zq: @ € A). For every a € A, let (qp,¢: & < o) be an antichain in P, -, ) of
cardinality o. Define 6, to be the unique ordinal { < & for which p,, ¢ € G [ (4,7, (if there
is no such &, which is possible since the antichain is not necessarily maximal, set 6, = 0).

Now, given 8 < k and a condition p € P, pick first a € A for which z, bounds the
support of p. Direct extend p to p* such that p* [, 7. )= ¢s.,5- Then by our definition, p*
forces that 6, = .

Let us argue now that indeed, for every o < s there exists 7, < s such that P [ 5, is
not a — c.c.: Pick 7, such that there are a-many elements of A in the interval (o, 7,). Let
(Tae: € < ) be an enumeration of the first a-many elements in (o, 7,) NA. For every £ < a,
let z¢, Ye be P, -names, forced by OpTa,g to be pair of incompatible elements of Qm. Such
a pair exists since (), . is nontrivial.

Now, for everyNU € 2<% let p, € P [(a,r,) be the condition which satisfies, for every
¢ < a, that—
ze Ifo(§)=0
ye Ifo(f)=1

Note that 7, is the limit of the first a many elements above o in A, and thus 7, is singular,

Do f&“‘Pa (f) = {

so the support of a condition in P = P, may be unbounded in 7.



Then (p,: 0 € 2<%) is an antichain in P [(4,-,) of cardinality at least . [

Remark 2.11 Given a function a — ¢, as in lemma 2.9, we slightly abuse the notation
and denote i (a + 04) by (04: a <i(k)).

Lemma 2.12 Under the assumptions of theorem 2.7, there exists H € V' [G] which is (i(P)\
Kk, <*)-generic over N [G], with the following property:

(%) For every generator [ € i(k)\ (k+ 1) ofi, there exists a function f = fz €V,
f:k — Kk and a condition ¢ € H such that qIF =1 (a > Qf(a)) (K) .

where (0 : a <i(k)) is as in remark 2.11.

Proof. In V' [G], let (A¢ | € < k™) be an enumeration of maximal antichains in i(P). Let
(Be | € < kT) be an enumeration of all the generators of ¢ below i(x). Define in V]G] a
<* —increasing sequence (r¢ | £ < k7). Assume that (re: & < £*) has been constructed for
some £* < k7. Pick a condition  which <* extends all the conditions (r¢: £ < ) constructed
so far, and, by extending it, assume that r extends a condition in Ag«. Finally, let ag < i(k)
be such that for every a > o there exists r* >* r which forces that i (§ — 6;) (o) = Pe-.
Pick any a > ag below i(x) which has the form i (f) (k) for some f = fs. € V, and let
re« >* r be a condition which forces that i (€ — 0¢) (o) = Se-.
Finally, let H be the <*-generic generated from (r¢: £ < £*). O

Remark 2.13 Repeating the above argument, we can construct 2 -many distinct generic
sets H satisfying property (x), by constructing a binary tree (r,: o € 2<“+> of conditions,
which are <*-increasing in each branch, and for each o € 2<””+, To~(0)y and 7o~y are <*-
incompatible. Assuming 2% = x**, this provides the maximal number of generic sets H in
V' [G] for (i(P) \ k,<*) over N [G].

Below we will define for every such H a measure Uy € V [G]| on k which extends U,
under mild assumptions on the forcing notions @, we will prove that for H # H’ satisfying
property (%), Uy # Upg (see theorem 2.18). Kssuming GCH, this produces the maximal
number kT of normal measures on k, generalizing the well known result of Kunen and
Paris [25].

Remark 2.14 Not every generic set H € V' [G] for (i(P) \ k,<* ) satisfies property (x).
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Indeed, assume that i: V' — N has at least one generator in the interval (x,i(x)). Let
o: My — N be the embedding which maps each element [f],; of My to i(f)(x) (here f € V
is any function with domain ). o has critical point strictly above s, since (k1) = k*.

In V [G], let Hy C juy(P)\ k be <*-generic over My [G]. Let H C i(P)\ k be the generic
set generated from o” Hy. We argue that H is indeed <*-generic over N. Let D € N be a
<*-dense open subset of i(P) \ k. Write D = i(F) (s, 51,...,3) for some function F' € V,
| < w and generators fy,...,3 < i(k) of i. We can assume that for every &, m,...,n,

F(&n,...,m) C P\ is forced to be <*-dense open subset of P\ £. Define, in My,

DU: ﬂ jU<F)("€7717'-'7P)/Z)
Y150 <Ju (k)
and note that, since the amount of generators vq,...,7v < ju(k) in My is k™, and (jy(P) \

k,<* ) is more than k*-closed, Dy is <*-dense open subset of jy(P) \ k. Pick any ¢q €
Hy N Dy. Then o(q) € DN H, since o(Dy) C D.

Since 0”"G x Hy C G * H, the embedding o: My — N can be lifted to an embedding
o*: My |G x Hy] = N [G = H]|.

Pick now any generator /5 of 7 in the interval (k,i(x)). We argue that there is no f € V'
such that HIF 5 =1 (a = 0 f(a)) (k). Indeed, otherwise, by elementarity of o*, there exists
p* < ju(k) such that—

Hy I 8" = ju (a = 0 s() (k)

Let g € V' be a function such that 5* = jy(g)(k). Then—
p=0o" () =ilg)(x)
contradicting the fact that g is a generator of i.

Given 4, N, U as in theorem 2.7 and a generic set H € V' [G] for (i(P)\ k, <*) over N [G],
define—-

Un =1{(A)s: Aisa P —name for a subset of s, and there exists

p € G * H such that plI-x € i (4)}

Then Uy is a normal, k-complete ultrafilter which extends U. This follows by repeating the
argument of lemma 2.5.

The model My, ~ Ult (V [G],Up) is of the form M[G*], where M is the image of V and
G* = ju,(G) is ju, (P)—generic over M in sense of My,,. We conclude the proof of theorem

2.7 by defining an elementary embedding k: N — M and proving that crit(k) > &.
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In the next lemma we continue the abuse of notation as in remark 2.11, and denote—

Juy ((Oe: € € A)) = (Og: € € Juy (A))

Lemma 2.15 Assume the settings of theorem 2.7. Suppose that H is a generic set for
(1(P)\ Kk, <*) over N |G| with the property (x). Define then k: N — M as follows:

kG (R, B, s 1) = U () (H,e[fﬁJUH,...,e[fﬁl]U )

For every | < w, p1,...,0 < i(k) generators of i and f € V' (the functions fg,, 1 <1i <1,
are as in lemma 2.12).

Then k: N — M s elementary, crit(k) > k and jy,, [v=koi.

Proof. Denote W = Up. Let us prove that the embedding &k defined above is elementary.
Assume that 2,y € N. There are functions f,g in V, generators f; < ... < (3 < i(k) such
that—

v =1i(f) (K, br,....B), y=1i(g) (r,Br,..., B)

Assume now that k(x) = k(y), namely—

jW(f) (’%7 ejw(fﬁl)(n)a v 79jw<fﬁl)(fi)) € jW(g) (’%7 ejw(fﬂl)(n)a S ’ejw<fﬁl>(f€))

Then—
{E<n:f (57%1(@» - -v%(s)) €9 (5»%1(5» e »%(s))} e W
and by the definition of W, there exists p € G and r € H such that—

prikke i({f <k:f <§>Qf31(s)w->ifsl(§)) €yg <§>Qfsl(s)w-->£fsl(£))}>

By extending r € H finitely many times, p~r |- r@(i(fﬁm)(”)) = [,, holds for every 1 < m < k.

Thus, the last equation can be replaced with—

pﬁr I+ Z(f) (’%7517 v 7ﬁl) € Z(g) ("@ﬁla B 761)

but the forced statement above is entirely in N, and since a condition forces it, it is true in
N. Thus—

i(f) (K, B, B) €i(g) (K, Bus -, Br)

as desired. The implication in the other direction is proved similarly.
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Clearly crit(k) > k. We finish the proof by showing that ji [y= koi. Let x € V and

let ¢,: kK — V be the constant function with value z. Then—

k(i(x)) = k(i (cx) (8) = Jw (c2) (R) = jw ()

as desired. [
Let us now study the properties of the embedding k: N — M. We assume the settings
of theorem 2.7.

Lemma 2.16 [f <=<*, then k is the identity and M = N.

Proof. Fix an ordinal n, and let f € V' [G] be a function such that n = [f],,,. We will prove
that n € Im(k). Indeed, consider the set—

{pei(P)/G|37(pIFi(f)(x) =)}

It is < —dense in N[G]. So, if <=<* then H meets it. Thus, there exists a condition g € H,
a function g € V and generators /3, ..., of i, such that ¢ IFi (f) (k) =i(g9) (k, b1, .., 51)-
Thus, by the definition of W,

{€ <k () =g (6070 On0) €W

and thus n = [f],, = k (i(9) (K, b1, ..., B1))-
0

In general, M should not be equal to N. Thus, for example, they will differ if the Prikry

forcing was used unboundedly often below k.

Lemma 2.17 k"H C G*\ k.

Proof. Let ¢ be in H, and let p € G be a condition such that p I ¢ € H (recall that
H € V[G]). Clearly,

p qlFqel\k
where I' is the canonical i(P)-name for the generic set for i(P) over V.

Pick f: [k]" — K, f € V and 8 < ... < B, < i(k) such that ¢ = i(f)(f1, ..., Bn). For
every m,1 < m < n, there are f,, : kK — K, f, € V such that ¢y, )5, € H, namely,

Bm = el(fm)(’i)
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Let us argue that the set—

Ay ={v <w | f0nw) - 050) € G\ v}

is in W. Pick any ¢ <* ¢* € H which <* which forces that f3,, = Hi(fﬁm)(ﬁ), for every
1 < m < n. Recall that—

q=1(f)(B1, s Bn) = () Oicr)w)s s Oitha) ()

and thus p~ ¢* I- k € i(4,).
U

The next lemma generalizes a Kunen-Paris result (see remark 2.13).

Theorem 2.18 Let H,H' € V [G] be generic sets for (i(P) \ k,<* ) over N [G]. Suppose
that H and H' satisfy (x). Assume that for every f < k, if ¢.¢' € Qg are incompatible

according to the order <*, then—

Ds(q) ={r € Qp | r is < —incompatible with q}
is <* —dense above ¢, or

Ds(q') ={r € Qs | r is < —incompatible with ¢'}

is <* —dense above ¢.!

Suppose that H # H', then Uy # Ugy.

Remark 2.19 Note that if the ()g-s are taken to be Prikry forcings, then the above property
holds. Indeed, assume that ¢ = (t, A) and ¢’ = (', A’) are <*-incompatible. Then ¢ # t’. As-
sume without loss of generality that ¢ is an end extension of ¢'. Then D(q) = {r: r,q are <*
-incompatible} is <*-dense open above ¢'. Indeed, pick a condition (¢, B) >* (t', A). Shrink
B to the set B* = B\ (max(t) +1). Then (¢,B*) >* (¢, B) and is incompatible with
q=(t, A).

Proof. Suppose otherwise, i.e. H # H', but Uy = Uy := W.
Let k: N — M be the elementary embedding defined from H and k' : N — M from H'.

I This type of condition usually holds. For example, if we iterate Prikry forcings, then just shrinking sets
of measure one will produce such type of incomparability.
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Claim 2 k #£ K.

Proof. Assume for contradiction that £ = &’. Thus, by Lemma 2.17, every pair of elements
from H, H are <-compatible. We will argue that this implies that H = H’. It suffices to
prove that every pair of conditions q € H,q' € H' are <*-compatible.

Assume otherwise. Let a < k be the least ordinal such that there are pair of con-
ditions ¢ € H,q € H' for which ¢ [.,q¢ [. are <*-incompatible. « cannot be limit, since
<*-compatibility of all the initial segments of ¢, ¢’ below « implies that ¢ [, and ¢’ [, are <*-
compatible themselves (if « is inaccessible, this is clear since the support of ¢, ¢’ is bounded
in «; if the supports of ¢, ¢’ are unbounded in «, just intersect sets of measure one to find a
common direct extension). Thus o = S+1 is successor, and ¢ (3), ¢’ (5) are <*-incompatible.
By the property of the forcing (), without loss of generality, Dg (¢) is <*-dense open above
¢'. Since ¢ € H'(B), ¢’ can be extended to a condition r € H’', such that r(3) € Dg(q). In

particular, ¢ € H, r € H' are <-incompatible, which is a contradiction. [J of the claim.

Since k # k', there exists a generator 5 of i such that k(3) # k'(/5). Pick the least such

generator 3.

Claim 3 For every generator ' < 3 of i, there exists a function fg € V such that each
generic H, H' has a condition which forces that 8 =i (fg) (k).

Proof. This essentially follows from the minimality of 5.
Indeed, let fz and f3, be the distinct functions produced from property (x) of H, H' with
respect to the generator #’. Assume for contradiction that one of the generics, say H, has a

condition which forces that Qi(f[%/)(n) + Qﬂ< . By applying k, in M [jw (G)],

I4) ()

) 7 il
namely—
k(B # K (6)
contradicting the minimality of £. [J of claim.

Recall now that k() # k'(8). Thus, there are two distinct functions f, f/ in V such
that—

1. Some condition in H forces that 8 = 0 i)
2. Some condition in H' forces that 8 = 0 (s (x)-
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3. Without loss of generality, {{ < k: Ope) < 05y} € W.

There exists an ordinal 4" such that some condition in H forces that 0w = B'.
(Remark: This should be proved). By the third property above, 5 < (.

We argue that (' is a generator of ¢ as well. This will finish the proof: once we prove
that 3" is a generator of 4, it follows from claim 3 that 6, represents 3’ in the sense of
both generics, H, H'. However, in the sense of H’, it represents 3, which is a contradiction.

Assume for contradiction that 3’ is not a generator of . Then there is a function g € V
and i, ..., 3 below 3, such that 8" =i(h) (x, b1, ..., 3). Since H forces that 8’ = 0 (),
it follows that—

{6 < ki g (605,00 0n0) =Opio} € Un =W

Thus the same set belongs to Uy,. Therefore, H' forces that—

B = i) = i(g) (K, By - -, B1)

contradicting the fact that § is a generator of i (note that we used claim 3 when arguing

that the generators f3;, 1 <i <[, are represented the same way in the sense of H, H"). O

Definition 2.20 A measure W € V [G] is called simply generated if W = Uy for some
U €V, where H is generic for (jy(P) \ &, <*) over My [G].

Remark 2.21 Given a simply generated normal measure W € V [G] as above, the param-
eters U and H are uniquely defined from it. Indeed, we will prove in the next lemma that
U =W NV belongs to V, and is a normal measure with A ¢ U. Now, assume that there are
H. H', generic over My [G] for (ju(P)\ k, <*), with W = Uy = Ugr. Then H, H' satisfy the
conditions of lemma 2.18 (since jy has no generators other than x). Thus, by the theorem,
H=H.

Given W € V' [G] normal on x (which is not necessarily simply generated), we can say

the following:

Lemma 2.22 Every normal measure W € V [G] on k extends a measure U =W NV €V
with A* ¢ U.

Proof. First, let us argue that U = W NV belongs to V. By [?], it suffices to prove that
there are no new fresh unbounded subsets of cardinals in the interval [/@, (2”)‘/] = [k, kT].

Thus, it suffices to prove the following pair of claims:

14



Claim 4 P = P, does not add fresh unbounded subsets to k.

Proof. The fact that there are no fresh unbounded subsets of x follows essentially from the
fact that there exists a normal measure on x in V [G]: Given a normal measure U € V
with A ¢ U, take any U* € V [G] which extends it. Given a fresh unbounded A C k, A =
ju~ (A) Nk and thus, by elementarity, A belongs to the ground model N of Ult (V' [G],U*).
Now set ky: My — N to be the function which maps [f];; to [f],.. Then ky is a well
defined elementary embedding since U C U*, and crit (ky) > + by normality of U*. Since
2% = kT holds in N, ky maps the sequence of subsets of x to itself, and thus every subset of
x which belongs to N, already belongs to V. So the above set A belongs to V', which is a

contradiction. [J

Claim 5 For every measurable (in V) A\ < k, Py doesn’t add fresh unbounded subsets of
AT. In particular, P. does not add fresh subsets to A™.

Proof. Let f € V [G] be the characteristic function of a fresh unbounded subset of A*. Let
f be a Py-name and assume that p € P forces that f is fresh.

Let G C Py be generic over V. For every £ < AT, let pe € G be a condition which decides
f le. For every & < A% there exists ae < A such that the support of pe is bounded by a.
Let A C AT and a* < X be such that [A| = AT and ag = o* for every £ € A.

By shrinking A C A" even further (to a set of cardinality A™), we can assume that there
exists ¢* € Py such that, for every { € A, pe [o+= ¢" o+, and ¢* [|o- ) is trivial.

Let h=J{g: I < Aq* Ik rj: le=g}. Clearly, h: At — 2is a function and ¢* I i =/

Finally, let us argue that A* ¢ U. Assume otherwise. Since A* € U, A* € W and thus
0. = [ 0,]y < k is the ordinal added by the forcing at stage « in jw(P). By k — c.c.
of the forcing P = P, there exists u < x and a condition p € G such that pI- 6, < p. In
particular,

X={a<k:pldFlo<purew

Since supp (p) is bounded in &,
and let v — Q « be a function in V' which maps each a € A* to the ),-name for 6,,.
there exists a @Q.-name for an ordinal ¢, = i(a+ 0,)(k) below . Let p € G
be a condition which decides the value of 6,.. Assume that p I 6, = 3. Then x €
i({a < k:plal 0o = pF}) and thus-

X={a<n:pldtl0o.=p}cU
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However, this contradicts the density above p of the set of conditions ¢ € P = P, for which
there exists a € X such that ¢ [,IF 6, # 3 (it is dense since an Easton Support is used and
X is unbounded in k). O

Lemma 2.23 Assume that there are not elements in (k, crit(k))Ni(A). Then crit(k) € i(A),

namely, it is the least element above Kk in i (A).

Remark 2.24 The assumption (k, crit(k))Ni(d) = @) holds in the natural case where P = P,
is an iteration of Prikry forcings. Indeed, assume, by contradiction, that there exists u €
(k,\) Ni(A). Then p =k (n), and thus in M [jw (G)], i changes cofinality to w. Therefore,
in V[G], cf () = w, and, in V', cf (1) < k. The sequence witnessing this belongs to VN (*N)
and thus, by our assumption on N, belongs already to N. This contradicts the measurability

of uin N.
Proof. Denote A = crit (k). Then for some h € V and k = fy < 1 < ... < Sy,

A =i(h) (B, -, B

By the definition of k£, A > k.

We first prove that A € i(A). Assume otherwise. We can assume without loss of
generality that for every & vy,... v below K, h (&, v1,...,v) > € does not belongs to A:
this can be assumed by replacing the function A with the function #’: [k]"™" — & defined as
follows: For every &, my, ..., Mk, B (&, m, ..., mx) equals A (&, m, ... ,mp) if A (E,m, .. k) > €
is not measurable in V; and else, A/ (£, 7, ...,mx) is an arbitrary non-measurable above &.

By our assumption,
’l(h) (K,ﬁl,...,ﬁk) :’l(h/) (Ii,ﬁl,...,ﬂk)

so we can replace h with A'. Since A is regular (as a critical point of an elementary embed-
ding), we can assume, using a similar argument, that each h (£, vy, ..., v) is regular.

We can assume that for every &, uq, ..., 1, there are no elements of A in the interval

(gah(ga Vi, .. '7Vk))-
Let f € V [G] be a function such that [f];, = A\. Then-

[flw =A< k) = jw (h) (5, d ([folw) - - d ([fadw))
By the definition of W, there exists p € G and r € H such that—

poriRi(f)(k) <i(h)(k,d(i(fs) (K) -, d (i (f5,) (K)))
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Recall that, for every 1 < i < k, there exists a condition in H forcing that d (i (f3,) (k)) = Bi.
Thus by extending r inside H,

pr ik Z(i)(lﬁ) < i(h) (k,B1,...,Bk)

Since there are no measurables of N in the interval (k,i(h) (K, Bo, . . ., Bx)], we can find ' >* r
inside H such that—

plF3a <i(h) (K, b1y, 8), ¥ IFi(f)(k) < a

and since P = P, is k-c.c. and i(h) (k, 1, ..., Bk) is regular, there exists o < i(h) (k, 51, ..., Bk)
such that—

pr' - z(i)(f{) <«

Now apply £ on both sides. By lemma 2.17,
M [jw (@) E A = [fly < k(a)
but a < i(h) (k, B1,...,0k) = A and thus A < k(o) = a < A, which is a contradiction. [J

Remark 2.25 Assume that P = P, is an iteration of the one point Prikry forcings. A one
point Prikry forcing on a measurable « is a forcing, which depends on a normal measure U
on «, and is defined as follows: Conditions are of the form A where A € U or ¢ for some
ordinal £ < «. The latter kind of condition cannot be extended. A condition of the form A
for A € U can be extended in two ways: A direct extension is a condition B where B € U
and B C A; a non-direct extension is of the form £ where £ € A is an ordinal.

We argue that in this case, the question whether (x, crit(k)) Ni(A) # 0, and, as a result,
the value of crit(k), depend of the choice of H:

1. Denote by p the first element above k in i(A). Assume first that H is chosen such
that the condition on coordinate p is a measure one set. In this case, p = crit(k).
Indeed, crit(k) < p cannot hold, since then (&, crit(k)) Ni(A) = @ which implies, by
the last lemma, that p = crit(k). And p < crit(k) cannot hold since then k(u) = pu.
Denote by 19 < p the one point added below p in jy (G). Then H at coordinate p has
a condition which is incompatible with 1 (by shrinking the large set and applying a
density argument). Thus p = crit(k).

2. Denote now by u the least element in i(A), for which H does not specify the one-point
element added to it. We argue that crit(k) = u, even though p doesn’t have to be the

least element above  in i(A).
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Repeat the proof of the last lemma, and note that the <* forcing in the interval
(k, ) is trivial, since no condition in this interval can be non-trivially extended.
This replaces the assumption that there are no elements of i (A) in the interval
(kyi(h) (K, B1y ..., Bk)). Therefore, u = crit(k).

3 Easton Support Iterations of Prikry Forcings

Let us deal here with an Easton support iteration P of the Prikry forcings over a set A of a
measurable length . Let U be a normal ultrafilter over x in V with A € U. Let G C P be

a generic and W be a normal ultrafilter in V[G] which extends U.

3.1 On jw (k) > ju(k)

Clearly, jw (k) > ju(x). Our interest here will be in situations when a strict inequality holds.
Note such phenomenon is impossible with the full or with the non-stationary support.

Start with the following simple observation:

Proposition 3.1 The set
Lw()(K) [ fr—k feV]

is unbounded in jy (k).
Hence, K" jiy (k) is unbounded in jw (k), where k([flv) = [flw is the embedding defined in the

section 1.

Proof. P satisfies k—c.c. Hence for every g : kK — k in V[G] there is f : K — x in V which
dominates it, i.e., for every v < K, g(v) < f(v).
O

Let us present a first example of a situation where jw (k) > ju(k).

Definition 3.2 (W. Mitchell) A cardinal x is called u—measurable iff there exists an exten-
der E over k such that E, € Mg, where E, = {AC k| k € jrp(A)}.

Note that we can use a witnessing extender ' with two generators only - k and the ordinal
n < 2% which codes E,. The ultrapower by such extender is closed under x—sequences.

The next lemma is obvious:

Lemma 3.3 Suppose that k is p—measurable and E is an extender witnessing this. Then

je. (k) < ju(k).
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Proposition 3.4 Suppose that k is p—measurable and E is an extender witnessing this
which ultrapower is closed under k—sequences. Let U = E, and A C k be a set of measurable
cardinals which is not in U. Force with an Easton support iteration P of the Prikry forcings
over A. Let G C P be a generic.

Then, in V|G|, there is a normal ultrafilter W which extends U such that jw (k) > ju (k).

Proof. Construct W as in theorem 2.7 using F, i.e., i = jp and N = Mp.
Then ju(r) < jp(k) = i(k) = jw (k).
U
Let us observe now that we need a p—measurable in order to have jw (k) > ju(k),

provided V = K, where I denotes the core model.

Proposition 3.5 Assume —0Y. Suppose that V = K. Let U be a normal ultrafilter over k
and A C k be a set of measurable cardinals which is not in U. Force with an Easton support
iteration P of the Prikry forcings over A. Let G C P be a generic.

Suppose that, in V[G], there is a normal ultrafilter W which extends U such that jw (k) >
ju (k).

Then k is a p—measurable in V. Moreover, U is a normal measure of a witnessing extender.

Proof. Suppose otherwise.

Consider jy [ V.

By Mitchell [6], it is a normal? iterated ultrapower of K = V' by its measures and extenders.
Recall that W NV = U, and so, U = {AC k| A€ V,k € jw(A)}. The assumption that
U is not a normal measure of an extender which witnesses a u—measurability of x implies
then that U must be used first in this iterated ultrapower.

Apply now the arguments of [3] in Iy the core model of M. For every measurable
a,k < a < jy(k), there will be a bound 7, (which depends on o(«)) on number of possible
applications of measures and extenders over o with their images, and, by the assumption
that there is no strong cardinals, 7, < ju (k).

Let C C jy(k) be the closure of the set {a | k < o < jy(k), v is a measurable in Ky }.
Then the continuation jy of jy cannot move any point of C'. This implies that jy (k) does
not move, and so, jy(k) = jw (k).

O

2Extenders with smaller indexes are used first.
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The situation changes if we do not assume V' = K. Let us argue now that the consistency

strength of jy (k) > ju(k) is just a measurable which is a limit of measurable cardinals.

Proposition 3.6 Let Vy be a model of GCH with a measurable cardinal x which is a limit
of measurable cardinals.

Then there is a cardinal preserving generic extension V of Vi which satisfies the following:
Let A be an unbounded subset of k consisting of measurable cardinals. Force with an Faston
support iteration P of the Prikry forcings over A. Let G C P be a generic.

There exists a normal ultrafilter U over k in 'V and a normal ultrafilter W in V|G| which

extends U such that jw (k) > ju(k).

Proof. The idea is as follows. Let W be a normal ultrafilter over x in V) which concentrates
on non-measurable cardinals. Consider W2 =W x W and W3 =W x W x W.

Let j1 = jw,jo = jw2,Js = jws, M1 = Mw, My = My2, M3 = Mys, k1 = j(k), Ky =
Jo(K), k3 = js(k). We have natural commuting embeddings jio : My — Ms, joz : My — Ms;
and jiz : My — Mj. Namely, ji2(j1(f)(x)) = j2(f)(K), j23(52(9) (K, k1)) = J3(9)(k, K1), ete.
Note that the critical point of jis, j13 is k1 and of jo3 is ko. However there is an additional
way to embed My into M3. Define o : My — Mj by setting o(j1(f)(k, k1)) = Js(f)(k, Ka).
Clearly, o is elementary and its critical point is k1 and it is moved to ks.

The idea will be to force in order to extend W to a normal ultrafilter U such that
1. My is a generic extension of M,
2. W3 extends to a k—complete ultrafilter £/ with My a generic extension of Ms,

3. U is the normal ultrafilter which is strictly below E with the corresponding embedding

extending o.

Now, ke < k3 will imply jiy (k) < jr(k), since jy(k) = k2 and jg(k) = k3.

Such construction was used in [2]. We refer to this paper for details. Let us only sketch
the argument.

We force a Cohen function f, : & — « for every inaccessible o < x using the iteration
with an Easton support.
Denote a generic object which produces such (f, | @ < K, « is an inaccessible ) by Go.
Let V = V4Gl
It is possible to extend all the embeddings, ji, 72,73, j12, J13,J23, 0. We change one value

of f., at kK by setting it to ko. Let G5 be such generic over M3 Then, j3 : Vj — M;
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extends to j3 : Vo[Go] — Mj3[Gs]. Derive now U and E from ji ,in V = V[Gy], by setting
U={ACk|keji(A)}and E = {B C k*| (k, k1, k2) € j3(B)}.

Finally we apply the construction of Section 77 to U and E to produce an extension W
of U in V[G].
OJ

Note that U produced in 3.6 can be picked to be the minimal in the Mitchell order,
which is not true about one of 3.4, where V = K. Let us argue that under rather strong

assumptions it is possible to find such U in K.
Proposition 3.7 Let U be a normal ultrafilter over k. Suppose that the set
{a <Kk |aisk— strong }

is unbounded in k. Force with P as above. Let G C P be a generic. Then, in V|G|, there is

a normal ultrafilter W over k such that
1. UCW,

2. jU(li) < jw(/ﬁl),
moreover, jw |V =k oi, where
e 1:V —= N,
o ju(k) <i(k),

e 1, N satisfy the conditions of theorem 2.7.

Proof. Work in My. Pick some o,k < a < jy(k) which is jy(k)—strong. Let E € My be
an (o, ju(k))—extender witnessing this. Set N to be the ultrapower of My by E and let
1= jg o jy. We have

a < ju(k) < je(a) < je(ju(k) = i(x).

The rest is as above.
O
We do not know whether the assumption of 3.7 is really necessary. However it is possible

to show the following.
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Proposition 3.8 Suppose —09.

Assume V = IC.

Let U be a normal ultrafilter over k which is minimal in the Mitchell order.

Let P be an Easton support iteration of Prikry type forcing notions up to k and G C P be a
generic.

Suppose that W is a normal ultrafilter in V|[G] which extends U.
Then ju(k) = jw (k).

Proof. By W. Mitchell [6], ji | K is a normal iterated ultrapower of K by its measures and
extenders.
The minimality of U implies that it must be used first in this iteration.
Apply now the arguments of [3] in Ky the core model of My. For every measurable
a,k < a < jy(k), there will be a bound 7, (which depends on o(«)) on number of possible
applications of measures and extenders over o with their images, and, by the assumption
that there is no strong cardinals, 7, < ju (k).
Let C C jy(k) be the closure of the set {a | kK < o < jy(k), v is a measurable in Ky }.
Then the continuation jy of jy cannot move any point of C'. This implies that jy (k) does
not move, and so, jy (k) = jw (k).
O

We conjecture that the needed strength (for 3.8) is exactly

{a < Kk | ais Kk — strong } is unbounded in x.

Thus, R. Schindler [7] extension of the Mitchell result can be used to argue that jy [ K
is a normal iterated ultrapower of K by its measures and extenders. A missing part is an

extension of [3] beyond strongs which is likely to hold.

3.2 Properties of k

Let 2: V' — N be an elementary embedding as in theorem 2.7, and assume that W = Ugy
and k: N — M are as in lemma 2.15.

In the setting of iteration of Prikry forcings, much more can be said about the embedding
k: N — M. From remark 2.24, it follows that crit(k) is the least element in i(A) above k.
In particular, by elementarity, k() € jw (A) in M, and thus a Prikry sequence is added to

k(w) in jw (G).
Lemma 3.9 Denote = crit(k). Then u appears in the Prikry sequence of k().
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Remark 3.10 p is not necessarily the first element in the Prikry sequence of k(). The
initial segment of this Prikry sequence below p depends on the choice of H. For every finite
sequence ¢ € [11]~, we can choose H C i(P)\ k such that ¢ is an initial segment of the Prikry
sequence of p. This way, in M [ji (G)], t will be an initial segment of the Prikry sequence
of k(i) below p.

Proof. Let t be the finite initial segment of the Prikry sequence of k(u) below p, and assume
that (¢, m1,...,m) — t(&,m,...,m) is a function in V', such that—

t=1 (&m0, m) =&, m)) (K, B, -, Br)

for some generators f,...,[5 of i. For every & < k, let s(§) = min{A \ (£+ 1)}, so
€= s(§))y = p. In V[G], define, for every £ < &,

w(€) = the first element above t (£,d (f3,) (§),...,d(fs) (§)) in the Prikry sequence of s(&)

and, if ¢ (§,d (fz,) (§),-..,d(fs)(§)) is not an initial segment of the Prikry sequence of s(¢),
set 1 (&) = 0.

It suffices to prove that [§ — u(&)], = p-

Assume first that n < p. Work in N [G]. Since H is <*-generic, it meets an element
q € i(P) \ K, for which A7 C p\ (n+1). Since ¢ € H, we can assume that ¢/ is an initial
segment of ¢: Indeed, ¢,¢ are compatible sequences, since, for any p € G which forces that
q € H and decides the value of ¢, the condition k (p~q) = p~k(q) belongs to jw (G), and
decides an initial segment, below pu, of the Prikry sequence of k(u). By our assumption,
this initial segment is contained in ¢, and p~k(q) forces that every possible extension of it is
above 7. Thus, in M [jw(G)], each element in the Prikry sequence of k(u) after ¢ is strictly
above 7).

The argument given in the previous paragraph also shows that for every ¢ € H, ] is
either empty or equals to ¢: As mentioned, it must be an initial segment of ¢. Let us argue
that if it is proper, then it is empty. Apply the above paragraph for n = max(t). Then by
direct extending ¢ inside H, it forces that the element after ¢ in the Prikry sequence of ;1
is strictly above 1. By applying k: N — M, there exists a condition in jy (G) which forces
that the Prikry sequence of k(u) has an initial segment t1, followed only by elements above
n. So tf cannot be a proper initial segment of ¢.

Assume now that n < [£ — u()]y,. Write n = [f];;, and assume that for every £ < k&,

f(&) < (&) < s(8)
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Let p € G be a condition which forces this. Work in N [G]. Take ¢ € H such that ¢1 = t.
Then i(p)~q = p—q forces that i(f)(x) is below the first element above ¢ in the Prikry

Y

sequence of u. Thus, its value can be decided by taking a direct extension. So, by direct

extending ¢ inside H we can assume that—

plF Ja < p, qll—i(i)(/ﬁ)<a

and thus there exists o < p in V', such that—

pqlFi(f)(k) <a

Thus, in M [jw (G)], n = jw(f)(k) < k(a) = a < p, as desired. [
In the next subsection we will decompose the embedding k to an iterated ultrapower of

N. We now demonstrate the first step in the iteration:

Lemma 3.11 Let pp = crit(k) and let U, ={X Cp: pe k(X)}NN. ThenU, € N.

Proof. For every ¢ < k, denote by W the measure in V [G¢] used to singularize ¢ in the
Prikry forcing at stage £ in the iteration. Let Us = W N V. We first argue that there exists
a set F € N of measures on pu, with |F| < u, such that, for some p € G and ¢ € H,

(1) pqlEi(§—= Ue) (1) € F

Indeed, let a be a jy(P)-name for the index of i (§ = Ug) (1) in a prescribed well order of
the normal measures p carries in N. Work in N [G]. For some g € H, there exists an ordinal
B such that g IF o = 3. Thus, by k — c.c. of the forcing i(P),, = P, there exist p € G and a
set S C 2% of ordinals with |S| < p, such that p~¢ - o € S. In particular, p~¢ forces that
i(§ = Ug) (1) belongs to F, where F is the set of measures on p indexed in 5.

Now apply k on equation (1), and work in M [jw (G)]. Since |F| < u, it follows that

there exists a measure F' € F such that—

gw (€= Ue) (k (p)) = k (F)

so it suffices to argue that F = {X C p:p € k(X)} N N. Fix X € F. Write X =
Z(g) (’%7 /807 ce 76/6) Then—

gw(9) (ked ((faly) - d (o)) € dw (€= Ue) (ki)
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Recall the function § — s(¢) = min (A \ (£ + 1)), for which [£ — s(§)];,, = k(n). We can

assume that for every & < k,

9 d(f5(8)),---,d(fs.(£))) € U

and let p € G be a condition which forces this. Then for strong enough ¢ € H,

P qlFi(g) (K, Br, .., Be) €0 (E— Ue) ()

and thus by direct extending ¢ further, we can assume that ¢ forces that the first element
after ¢ in the Prikry sequence of u belongs to i(g) (k, 51, ...,0k) = X. Thus k(q) € jw(G)
forces that the first element after ¢ in the Prikry sequence of k(u) belongs to k(X). By the
previous lemma, it follows that u € k(X), as desired. O

3.3 Description of jy [y

We now generalize the previous subsection, in order to completely decompose jy [v. For
technical reasons, we will assume that the measures used in the iteration P = P, to singu-
larize the measurables in A are all simply generated; this is needed only in the proof of claim
7 which will be presented in the next subsection.

At each stage a € A, let (), be the P,-name for the Prikry forcing on «, using a
simply generated normal meas{l\;e H{a on a. Denote U, = Y\[J/a NV e V. Let IN-I o C
(U (Pa) \ o, <), Ha € V' [Go], be <*-generic over My, [Ga], such that Wo = (Ua) g .-

Let G C P, be generic over V.

Our goal is to prove the following theorem:

Theorem 3.12 Let H € V [G] be a generic set for (i(P) \ k,<*) which satisfies (x). Let
W = Uy be the corresponding normal measure on k extending U, and denote its ultrapower
embedding jw: V [G] = M [jw (G)] ~ Ult(V [G], W) for some model M. Then jw [v factors
to the form jw [v= ko for some elementary k: N — M.

Moreover, if P is an Easton support iteration, where at each step € A, Qg is forced
to be Prikry forcing with a simply generated normal measure on (3, then k z'sNan iterated

ultrapower of N by normal measures and jyw (k) = i(k).

This, in contrast to Full-Support and Nonstationary-Support iterations of Prikry forcings,
where, assuming GCH<,,, jw [v is an iteration of V' by normal measures only.
If all the measures considered, including W, are simply generated, jy [y is an iterated

ultrapower by normal measures only:
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Theorem 3.13 Assume that P is an Easton support iteration, where at each step § € A,
Qs 1is forced to be Prikry forcing with a simply generated normal measure on 3. Then for
every simply generated measure W € V [G] on k, jw [v is an iteration of V by normal

measures. Moreover, if U =W NV then jw (k) = ju(k).

We will prove theorems 3.13 and 3.12 simultaneously. Assume that H € V' [G] is a generic
for (i(P) \ k, <*) over N [G] with the property (). In the case where i = jy and N = My,
any generic for (i(P) \ k), <*) is such. Let W = Uy € V [G] be the corresponding normal
measure on £. Let jw: V [G] = M [jw(G)] be the corresponding ultrapower embedding.

For every 8 € B, let fz be the function in V' such that H forces that 8 = 0;5) ) =
d(i(f)(r)) (such fz € V exists since H satisfies (x)). The mapping  +— fz is available in
V' [G].

Recall the embedding k: N — M defined in lemma 2.15. In our context, it is defined as

follows:
k (Z(f) (l{, 617 cee a/Bk)) = ]W(f) ('%7 d ([fﬁl]W) Yo 7d ([fﬁk]W))

then k is elementary, crit(k) > x and jw [v= k oi.
Denote £* = i(k). Define by induction a linear directed system ((M,: a < £*), (Jag: @ <
B < k*)) such that:

1. My =N, jo = i.
2. Successor Step: Assume that a < x* and M, has been defined. We will define

an elementary embedding k,: M, — M, such that jw [v= ks 0 jo. We denote
o = crit (ko) and define—

Up = {X C fta: pta € ka(X)} N M,

We will prove that U,,, € M, and take M,y >~ Ult (M,,U,,). We also take jq q41: My —

M1 to be the ultrapower embedding j%j‘ , and Jo41 = Ja,a+1 © Ja-

3. Limit Step: For every limit o < &*, the system (Mg: 8 < a), (jg: f < v < a) is
linearly directed, and we take direct limit to form the model M, and the embedding
Ja: V. — M,.

For every a < k*, define k,: M, — M as follows:

koz (ja (f) (’{7.]'0,&(51)7 cee 7j0,a (BZ) y Mo s - - 7#!%)) - jW (f) ("17 d ([fﬁl]w) 7"'7d ([fﬁz]w) y Moy s - -

for every f €V, fBy,..., 0 generators of i and oy < ... < o < a.

Our goal is to prove by induction on a < k* the following properties:
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(A) ko: M, — M is an elementary embedding, and jy [v= kg © ja-

(B) pq is measurable in M,,. Moreover, it is the least measurable in j, (A), which is greater

or equal to sup{us: f < a}, and whose cofinality is above  in V.
(C) pu, appears in the Prikry sequence of kq (ttq)-

(D) Let U,, be defined in V' [G] as above. Then U,, € M, is a normal measure which

concentrates on fi, \ jo (A). Moreover,

ko (U#a) = jw (6 = Us) (ko (tta))

where, for every 6 € A, Us = Ws NV, for Ws which is the measure used in the Prikry

forcing at stage 0 in the iteration P.

After that, we will prove in lemma 3.26, that k.-: M.~ — M is the identity, and thus
Jw Tv= Jx+. This will conclude the proof of theorems 3.13 and 3.12.

Remark 3.14 We remark that k., is well defined is the sense that there is no o < «
and generator (3 of i, for which jy(8) = po. Indeed, assume otherwise. Note that p, =
Joa (B) > Jo.or(B). Strict inequality is not possible here, since if jo o/ (3) < fior then jo o (8) =
Jo.a(B) = s, which is a contradiction. Thus, jo o (8) = o (which is, by itself, possible for
o' < a - see remark 3.15), but then, applying j. o, on both sides, we get—

joua(ﬁ) - ja’,a (,ua/) > !
where the last inequality follows since fir = crit (Jo/.a)-

Remark 3.15 It is possible that a generator /3 of i is measurable in N and belongs to i(A).
In this case, there exists a < x* such that po = 8 = jou(3). Let us observe the following

points regarding this situation:

1. B is still measurable in M, and is the critical point of k,. Also, 8 = u, appears in the
Prikry sequence of kg (tta) = ko (8) = d ([fslyy) in M [jw(G)]. In particular, d ([fs];)
is itself a measurable cardinal in M, by elementarity of k,. So d ([ fﬂ]W) appears as a

first element in the Prikry sequence of [f3],;,, and also, has a Prikry sequence added

W
to it, in which u, =  appears (not necessarily as first element).
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2. The Prikry sequences, both of [fs],, and d ([fs;;), have a final segment which is
generated by taking an iterated ultrapower with a single measure, over some finite
sub-iteration of (M, : o < k*); The main difference will be that § = pu, is part of this
final segment in the Prikry sequence of d ([ fﬂ]W>v while d ([ de) is not part of this final
segment in the Prikry sequence of [fs],,,. Indeed, it is not possible that d ([fsl,) = o
for some o/ < k*, since such p, is not measurable in M — its measurability is destroyed
when moving to M, = Ult (Ma, Uua/) — but d ([fg]w) is measurable in M.

Properties (A) — (D) of k,, presented above, will be proved by induction on a < x*.
The proof of the inductive step at stage o < k* will be carried out in subsection 3.5, using
the tools presented in [19] and [23]. Fixing a < k*, we can assume by induction that
ko : Mo — M and pior, U, ,, for o/ < a, satisfy properties (A) — (D). Denote by ¢, the

initial segment of the Prikry sequence of ky (ftos) below fig.

Definition 3.16 Fiz o < k* and a sequence of generators (1, ...,[0;) for i. An increasing
sequence {(aq,...,ag) below « is called a (By,...,[;)-nice sequence if there are functions

iy s Gky b1y -yt in V), such that—
Moy = joq (gl) (l{)jo,al (/81) y e ajO,oq (61))

tal = ja1 (tal) (/iajo,al (ﬂl) P 7j0,011 (ﬁl))
Uual = jOél (Fl) (K7j07a1 (51) Yo >j0,a1 (ﬁl))

and, for every 1 <1 < k,

:uoci+1 = jai+1 (gi+1) (K'>j0,a1 (ﬁl) PRI 7j0,a1 (Bl) 7,ua17 s 7#0@)

tOti+1 - jai+1 (ti-H) (’iaj(),m (51) yr e, 7j0,0¢1 (Bl) y Haq s+ - - 7:“’041')
U/Jai+1 = ja¢+1 (E+1> (/ia.jo,al (51) P 7j0,a1 (ﬁl) » Maq s+ -+ 7:u0!i)

Fix now a < k*. Assume by induction that properties (A) — (D) above hold for ev-
ery o’ < a. Fix also a sequence of generators (fi,...,05) for i, and a (f,...,5)-nice
sequence (ay, . .., ag) below a. We define, in V' [G], functions which can be used to represent
Hais ta;s Us;. Assume that p,, is the n;-th element in the Prikry sequence of ka, (ta,)-

First, set—

s (§) = the ny-th element in the Prikry sequence of g1 (&, d (f3,(§)) ..., d(f5(&)))
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By induction, define, for every i < k,

iy, (§) =the n;q1-th element in the Prikry sequence of
9i+1(€, d (fﬁ1 (5)) s d (fﬁl (6)) y May (6)7 s nuoei(f))

and U, (§) = W, ¢ NV. Here, given 0 € A, W; is the measure on ¢ used in the Prikry

forcing which was applied at stage ¢ in the iteration.
Claim 6 [{ — pta,(E)]y = o, and [§ — U ai(ﬁ)]w = Kk, (Uuai)-

Proof. We begin by proving that [£ — pa,(§)]y = fta,- We present the argument for ¢ = 1.

Higher values of @ < k are proved similarly, using induction. Recall that—

Moy = jOél (gl) (l{7j070¢1 (Bl) yo e, aj0,0q (61))

and by applying k,, on both sides,

kal (Mal) = jW (gl) (’%7 d ([fﬁl (6)]1/1/) PRI ’d ([fﬂl (f)]w))

By induction, p,, is the n;-th element in the Prikry sequence of k., (tta,), and thus it is
represented as the n;-th element in the Prikry sequence of ¢1 (§,d (f5,(§)),-..,d(f5,(£)))-
As for [f — U, ai(ﬁ)}w = ko, (Uu ), this follows since, by induction,

g

kai (Uuai> = Jw (6 = U5) (kai (:uai))

O
Let us argue that k,: M, — M is elementary.

Lemma 3.17 k,: M, — M is elementary.

Proof. Assume that z,y € M,, and let us prove, for example, that = € y if and only if
k(x) € k(y). Let f,g €V, p1,..., 0 and a1 < ... < ag < a be such that—

r = ]a(f) (/{7]'0,04 (/61) 3 7j0,0¢ (ﬁl) y Haq s+ - - nuock) y Y = ja(g) (’ivjo,a (61) ) 7j0,Oc (ﬁl) y Maqy - - - 7M04k)

Assume that v = o/ + 1 is successor (the limit case is simpler). For simplicity, we assume

also that ay = o/. Then z € y if and only if-

192% € ja’,a ({f < Has - ja’(f) (Haj[),a’(ﬁl)7 cee 7j0,a’(ﬁl)7 Hays - - - 7,Uak,17£) €
ja’ (g> (ij@,a/(ﬁl)v s 7j0,0/(6l>7 Hays oy Bag_qs £>})
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which is equivalent to—

1€ < o s jor (f) ("fajO,a’<5l)v s Joar (B1)s Hays - - 71“0%—175) =
ja’(Q) (’i7j0,04'(ﬁ1)7 ce 7j0,a’(ﬁl)7 Mayy - - 7/’1‘0%717&-)} € Uﬂa/

which, by the definition of U, ,, is equivalent to—

Mo S ka’ ({5 < Ha! - ja’(f) (’@jO,a’(ﬂl% cee 7j0,a’(ﬁl)7 Hayy - - - 7Nak,1;§) S
ja’(g) ("%]b,a/(ﬁl); s 7j0,o/(6l)7 Hayy - - 7/~Lak_17§)})
namely ko (z) € kq(y).

O

Let us describe now the main ideas behind the proof that yu, = crit (k,) is measurable
in M,. Note that this is not trivial since k,: M, — M is not definable in M,. The full
argument will be presented in lemma 3.23, but will require a technical theorem (theorem
3.18). Mainly we would like to follow the methods developed in [19] and [23], which deal
with nonstationary and full support iterations of Prikry forcings, respectively.

We consider the function f € V' [G], for which po = [f]};,- We will prove that if p, is
not measurable in M, then p, = [}, € Im (k,), contradicting the fact that p, = crit (ko).
For that, we first fix a function h € V such that, for some sequence [y, ..., §; of generators

of i, and for some nice sequence (ay, ..., ax) below a,
Ha = ja (h) (’iajo,oz (51) P 7j0,a (Bl) s Hay s - - - 7/1%11@)
since p, = crit (k,), we can assume that for every £ < k,

f(g) < h(§7d(fﬁl(§)) yroe 7d(fﬁl(§)) nuoq(g)v < 7Mak(§))

Pick a condition p € G which forces this. For every & < k, 7 = (m,...,m) and vV =

(v1, ..., V), denote—
e(&,7,7) = {r € P\vy: there exists a bounded subset A C h (£, 7, V) such that r I f(£) € A}

This set is <*-dense open above conditions which extend p and force that—

(2) <d (fﬂl(é)) ye 7d(fﬁl(§)) 7/’La1(§)7 s 7#0%(5)) = <777 ﬁ>
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We would like to follow [19] and [23], and construct a condition p* € G above p, such that,

very roughly®, for every &, 7, 7 as above, and for every extension r of p* which forces (2),

r b\, € e(7.7)

Essentially, such p* will have the following property: every extension r of it which forces that
equation (2) holds, forces also that f (£) belongs to a bounded subset A (§, 7, 7) C h (€, 17, V)
(which depends only on p* and (¢, 77, 7), and not on the choice of the extension of p* which
forces (2)). In [19] and [23] the construction of such p* was done by a Fusion argument which
allows, in a sense, to absorb a lot of data into a single direct extension p* of p. Such a method

is not available in the Easton support iteration. We bypass this problem by constructing,

for every sequence (£,my,...,m;), a system of non-direct extensions of p,
D&M,y Ve V) iy < o < Vg < K)
and sets—
(A&, M, vy ) s < oo < U < R)

such that the following properties hold:

L. Ifp(&m,...,m,v1,...,v) forces (2), then it also forces that f (&) € A (&, 7, 7), which
is a bounded subset of h (&, 177, V).

2. For aset of &-sin W, p(§,d (f5,(€)) .-, d([5,(8)) s thas (€), -, fta, (§)) belongs to G.

This suffices, since, by combining the above properties,

V[G] F {5 < K: f(f) € A(£7d<f51<€>>7'"7d(f51<€))>ﬂa1<£>7"'nuak<£>>} ceWw

and thus, in M [ji (G)],

po = [flw €[ = A& d ([, (8) - d([5(8)) s #on (), -+ 1y (E))]yy
:ka(ja(<€7ﬁ7ﬁ> = A(€7ﬁ7ﬁ)) (’ﬁﬁl?"wﬁlnulw”nuk) ) g Im<ka)

where the last inclusion follows since j, ((&,7, V) — A (&,7,7)) (K, B1, .-, Biy i1, - -+, fig) 1S &
bounded subset of pn = jo (R) (K, B1,- -+, B tays - - - s Moy )-
We will complete the missing details in the proof in lemma 3.23. Before that, we present

the proof of theorem 3.18.

3We omitted some of the details in the version described here, for sake of simplicity.
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3.4 Theorem 3.18 and its proof

We devote this subsection to the proof of the following theorem:

Theorem 3.18 Let p € G be a condition. Assume that for every increasing sequence

(& v1,... k), and for every i = (m,...,m) above £, the set—

e(ganly"'anlayla"'ayk)gP\Vk

is <* dense open above conditions in P\ vy which force that-

<7717~-777l7V17”'7Vk> = <d(f/31(5)>7"'7d(f/31(§))7Ma1(§)7"'7ﬂak(§)>

Then there are s < w, a new sequence of generators 3], ..., . of i which contains By, . ..

S

and a system of extensions of p,

D&My s My Vi ey Vk) S My ey s < By < oo < U < K)
with the following properties:
1. There exists a set of £-s in W for which—
p (57 d (fﬁi (5)) e 7d (fﬁg (5)) » Moy (5)7 e oy, (6)) fuak(g)“‘

p(&d(f5(8) - d (f5,(6) s 110 (&) - s 1 (8)) \ 1 () €
e (&d(f5(8) - d (f5(8)) s e (&), - - s 11 (€))

2. There exists a set of -5 in W for which—

p(ﬁ,d(fﬁ;(f)) >7d(f,3g(€)) 7“()61(5)7"'7“01«(5)) €G

(Intuitively, for the majority of values of (&, my,...,ns,v1,. .., V), the condition

p(&m,...,ns11,-..,v) which we will construct, forces that—

<d(f51<5))7’d(f55(§)) ’Mal(€)7“"luak(€)> = <7717'-'777$7V17-"7V/€>

and its final segment belongs to e (§, 71, ..., s, V1, .-+, Vk))-

Remark 3.19 When we extend a sequence of generators ((1, . . ., ;) to a sequence (/31

we will naturally identify the set e (§, 71, ...,n), with—

6/<€77]17"'77]S) 26(57772‘17---7771‘1)

where 4; is the index for which §{ = f;, for every 1 < j <.

Similarly, whenever a function g € V' is given, whose variables are &, ny,...,n,v1,. ..

we abuse the notation and denote g (&, 11, ..., s, V1, .., V) tomean g (&, iy, - -+, Miyy V1, - - -
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The proof of theorem 3.18 goes by generalizing the given sets e (§, 71, ..., M, V1, ..., Vg):

Definition 3.20 Foreveryn,...,m < k, 1 <1i < k and an increasing sequence (&, vy, . .., 1),

we define a set e (§,m1,...,m,v1,...,v;) € P\ v.

For i = k this is the set e (&, m1,...,m, 11, ..., ) given in the formulation of the theorem.
Assume that 1 < i < k. Work by recursion. Assume that for every v < giv1 (§,m1, -+ -,y V1, -« -, Vi)s
the set e (§,m,...,m,v1,...,v,v) is defined. Denote g;v1 = giv1 (E, M1, M, V1y o, Vi)

Let us define the set e (§,m1,...,m,v1,...,V;), as follows: A condition ¢ € P\ v; belongs to
e(&,m,...,m,v,...,v;) if and only if the following properties hold:

1. (A technical requirement) ¢ | decides the statements—

9i+1
FiJrl (£77]17"'77]Z7V17"'7Vj) :[./L/gi+1ﬂv7 tgiJrl :t’i+1 <§77717---77717V17---7Vz’)

Also, if q [y,,, decides that tI  # ti1 (&M, M, 11, - -, 1), it also decides whether
one of the sequences is an initial segment of the other, and if so, which one it is. Finally,
if it forces that 7 is a strict initial segment of ;1 &m,...,m,v1, ..., 1), it also
forces that A = C giy1 \max (t;iv1 (&, 11, s My 1y -2, V).

2. (The essential requirement) If both statements in the technical requirement are decided
positively, there exists a sequence—

< q(V) v < gi+1 <§77717"‘777I7V17"‘7Vi> >
such that, for every v < g;v1 (£, m1,.-.,m,v1,...,1;) above v, q(v) € P\ v extends
q\ v, and—
qIFif pg,, (&) =v, then q(v) € G\vand q(v) €e(&n, ..., MV, ..., Vs V)

Similarly, given (£, m,...,m), define e (&, 11,...,m) to be the set of conditions g € P\ £
which decide whether Fy (§,n1,...,m) = Wy ey NV, 6 (E 1, - om) = tg1(£,m,~-~,m)’ and,

assuming that it is decided positively, have a system of extensions—
(qw):v<g(&m,...,m))
such that, for every v < ¢; (&, m,...,m), q(v) € P\ v, and—

qH_lf ,ual(f)zl/thenq(U)EG\Vandq(V)Ge(ﬁ,m,...,m,u)

If it is decided negatively, then ¢ [, knows how to compare ¢ and t; (&, m,...,m) as in the

second point above.
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By induction, we will argue that for every ¢ < k and &,my,...,m,v1,...,v;, the set

e(&,m,...,m,v1,...,v) C P\ v is <*-dense open above conditions g € P \ v; for which—

q I+ <d<f61(£)) y oo 7d<fﬂl<§)) ) ga1(§)7 s 7ﬂai(§)> = <7717 RN /PR 4 TR Vi)) and for
every 1 S ] S i7 P1j+1 (57 My M Vi, - - 7Vj) = I,/L/ngrl(57771,~~~,7717V1,~~~7Vj) and
Zfj-i-l (57 My ooy M V1y e vy Vj) = tgj+1(§,m,...,m,l/l,.‘.,ui)
The induction will be inverse: The basis, for i = k, is true, as it is known that the set

e(&m, ... om, v, .., k) € P\ vy is <* dense—open above conditions ¢ € P\ v which force
that—

<d(f,31(€))""7d(fﬁl(§))7}3041(5)7"'7&&1@(&» = <7717""77l”/17""yk>

The inductive step is given in the following lemma:

Lemma 3.21 Fiz ny,...,m < k, 1 < i < k and an increasing sequence (&, v1,...,V;).

Denote giv1 = giv1 (E,m1, . M, V1, - .., ;). Assume that for every viyy € (v, giv1), the set—

6(6’7717"'777la1/17"'a1/i7yi+1) g P\Vi—‘rl

is <*-dense open above conditions q € P\ v;y1 for which-

q I <d(fﬁl(£))77d(fﬁl(£))7 1(5)7"'7&%(5)7;%04#1(5» = <7717'-~777l7V17'-'7Vi7V>7 andfor

la
every 1 <j <i+1, Fig (&, ymuvn, ..., v5) = W giia€mremiinry) @NA

q

ti+1 (f, s ey M Vs ee ey Vj) - tgj+1(577717--~777l71’17~-»7/i)

then e (§,m1, ... M, v, ..., ;) 1s <*-dense open above conditions q € P\ v; for which—

gIF{d (f5.(8)) - d ([ () s o (€)s- s i (€)) = (s ooy vy wi), and for

every 1 < 5 <1, Fj+1 (fv My N V1, ey VJ') = ‘,/L/gjﬂ(57771,..‘,771,1/17-..,1'1') and

q
Gi+1(EM1 50TV 500 V5)

tj_H(577]1,...77]171/1,...,1/]'):t

Proof. Let ¢ € P\ v; be a condition which forces that—

d(fﬁl(£))’7d(f6l(£))7r/i1(£)77!‘il(£)> = <7717"‘777I7V17”‘7Vi>

and for every 1< ] <1, Fj+1 (5’ ms.--- MV, ’Vj) = U\,/Qjﬂ(577717---77717V1,---,Vj)

_ 44
and t‘]—"_l (5’ 7717 T ’nl’ ]/17 Tt V]) - t9j+1(577717---777l71’17~--7’/i)
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Denote-
9= g1 (§&;m, sy, 1)
Ug=Fin (&1, Vi)
t="tiv1 (&M, Ve, V)
Assume that ¢ [, forces that—
W,NnV=U, t=11

(if not, we are done since ¢ € e(&,m1,...,m,v1,...,1;)). Denote n = lh(t). We will now

apply the following claim:

Claim 7 Assume that p € GG is a condition, n < w and g € A is measurable in V. Assume

that U, is a normal measure on ¢ in V, ¢ is a finite sequence below g of length n, and-
plEti=t W,NV =0,

For every v < g, assume that e (v¥) C P\ v is a P,-name for a subset of P \ v, which is
<* dense-open above conditions which force that v is the (n + 1)-th element in the Prikry
sequence of g. Then there exists a direct extension p* >* p and a sequence (p (v) : v < g),

such that, for every v < g,

p" IFif v appears after ¢ in the Prikry sequence of g, then p(v) € (G \ v)Ne(v)
and p* [l p (V) =" p" lg) ™ (" (1), 47 \») "\ (g +1).

Proof. For every v < g, consider the set—

dv)={re Plyg: 7| ve Al andif rIFv e A} then

riE3s > "), AL\ v)"p\(g+1), rs€e(v)}

Then d(v) C P I},,4) is <*-dense open above p [, 4. Let Hy be the Pj-name, forced by p [,,
to be the <*-generic subset of jy, (Py) \ g, for which—

Ii/g = (Ug)@g

(such a generic exists since W, is simply generated). Let ¢ € Ult(V,U,) be a P;-name,
forced by p to be a condition in [v — d(v)];, NHy. Let v g (v) € P [j,4) be a function in
V' such that [v — ¢ (v)];; = ¢. Then we can assume that for a set of v-s in Uy,

(3) pLIFq(v)ed(v)

~
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and, by lemma 2.17, p [, forces that there exists a set C' € W, such that for every v € C,

Pl qw) eG I,

~J

By shrinking C' if necessary, we can assume that every v € C' also satisfies equation (3). Now
let us define the extension p* >* p, and, for every v < g, the condition p(v) € P\ v. First,

set—

and, in Vv set—

p) I= q(v)
Work in an arbitrary generic extension for P [4, where p* [, belongs. For every v € C'N AP
(which thus satisfies p [, q(v) € G [,), there exists s(v) € P\ g, s(v) >* (t"(v), AP\

~Y

v)"q\ (g + 1), such that p(v) [, s(v) € e(v). Set—

p* (g) = <L§7 ég ncn (Au<g, VECQAPAS(V))>

g~9

(the definition above is carried in V' [G [/], so C is available there).
Let p*\ (g +1) = s(v), where v is the (n + 1)-th element in the Prikry sequence of g.
Finally, let—
pW)\g= ("), A7 \v)"p"\ (g+1)

where the above definition is possible if p [, " p(v) [,F v € ég*; if not, let p(v) \ g be
arbitrary.
This completes the definition of ¢* >* g and (p (v) : ¥ < g). Let us prove that for every

v<g,

p" IFif v appears after ¢ in the Prikry sequence of g, then p(v) € (G \ v)Ne(v)
and p* [, p (v) 27 p" [y~ (7 (), A7\ V) P\ (g +1).

Fix v < g and let G be a generic set for P which includes p*, such that, in V' [G], v appears
after ¢ in the Prikry sequence of g. In particular, v € C and thus ¢(v) € G [,4). By the
definition of p(v), and since p* € G, q(v) € G [g), it follows that p(v) € G \ v, as desired.
O of claim 7.
Apply claim 7 with respect to the set e (§,m1,...,m,v1,...,v;,v) C P\ v (recall that
&M,y My, ..., v are fixed), and direct extend ¢ further, to a condition ¢* >* ¢, which

has a system of extensions—

(a(v) v <yg)
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as in the statement if the lemma.

It follows that, for every v < g,

q* I if Ma¢+1(£)zythenq<y)€G\Vi andQ(V)\Ve6(577]1,.,.77%71/1,...71/2'77/)

Therefore (q(v): v < g) witnesses the fact that ¢* € e (§,m1, ..., m, V1, ..., Vk).
[ of lemma 3.21.

We now proceed towards the proof of theorem 3.18. We use the same notations as in the
formulation of the theorem.

By induction, the following holds: For every &,1y,...,m, the set e (§,m1,...,m) € P\ ¢
is <* dense open above conditions ¢ € P\ ¢ which force that—

<d (fﬂl(é)) ye 7d(fﬂl(§))> = <7717 cee ,771>

and that—

Fr(&m,...,m) = Wm(fﬂh ----- n) and 1y & m,ooom) = tfh(&m ----- m)

We would like to perform another step, and move from conditions in P\ £ to conditions
in P. This might require extending the sequence generators (,...,5;. We do this in the

following lemma, which concludes the proof of theorem 3.18.

Lemma 3.22 There erists s < w, a sequence of generators (f7,...,5) of i which extends
(B1,...,0), and a system of conditions—
<p<€77717"'777;7V17"'7Vk) : 7717777; <K, §<V1 <... <Vk>

(all of them extend the condition p € G given in the statement of theorem 3.18), such that,

{e<rp(&d(f5(6), - d(fs(8)  1an(€)s- -+ ey (€)) T, 5)“_
p(&d (f5(6)) s s d (f5(8)) s 1101 () - s o () \ by (€)
e(&d(fa(0), . d(f5,(9) s tar (€)s-- - s pay, (€)) and-
p(&d(fa(€) . d (f.(8)) oy (), 11ay (£)) € G}

Proof. Recall that W = Uy is generated from the elementary embedding ¢: V' — N. Let us

consider the set—

i(<577717--~7771> H6(577717---7770)(li’ﬁl:---aﬁl) gZ<P)\"i
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it is <*-dense open in i(P) \ k, and thus meets a condition » € H. Since r € N, it can
be represented using a sequence of generators (3], ..., %), on which we can assume that it
contains (f1, ..., ;). Let—

&)y =&, m,) € P\E

be a function in V', such that—

r=i((& - m) e (€ ) (5 By BY)

Now, for every (£, m7, ..., 1L, v1,. .., V), let us define the condition p (§, 7, ..., nL V1, ..., V) €

P. We do this recursively, and define, for every 1 <i < k, a condition p (§, 7}, ..., 0., v1,..., V) €

P. Simultaneously, we prove that—

{E<rp(&d(f5(6), - d(fs(8)  1an(€)s - 110, () Tpa, o)l
p(&d(fo(€) - d (fo,(€)) s ar (€)s - 110, (€)) \ 1 (€) €
e(&d(f3(8), - d(f5,(8) s e (&), - - i, (€)) and-
p(&d(f5(8) s d (fo(8) s e (6), - s 110, (€)) € G}

This will complete the proof of the lemma, and thus, the proof of theorem 3.18.

o First, fix &, m,...,ns, and let us define p(&,my,...,ns). U p Jedb v (&m,....ns) €

e(&m,...,m),set p(&m,....ns) =p e r(§m,...,ns). Else, let p(§,m1,...,ms) be
an arbitrary condition above p. We argue that—

{5 <K:p rﬁ I+ T(éad(fﬁi(g))a7d(fﬁé(£))) S e(gad(fb’{(g)) 77d(f5§<€>)) and
p(&d(f5©) ... d(f5(€)) € GyeW

Recall that r € H was defined such that—

p||_T€i(<§77717"'7771> '_>e(ganla--'anl))(H7ﬁl7"'75l)

applying the embedding k: N — M and reflecting down modulo W gives—

{&¢<riplelFr(&d(fa(€),....d(fs(6)) ee(&d(fa(©),. ...d(f5(£))}eW

Finally, p IF r € H and thus p IF k(r) € jw(G), by lemma 2.17. Reflecting this down

gives—
{&<rip(&d(fa(8),....d(fs(8)) eGeW
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 Fix §a77’1: Tt an;7 V1 and let us define p(fﬂ]ia s 777g7 Vl)‘ Denote g =0 (5:7717 T 777;)

Ep (€, TFp(&my, - m)\E € e(€,m, ... ), thenp (§,my, ..., m0) [e=p [e
decides the statements—

Fl(gﬂnlv"'anlaylv"'al/j):U\//ghmv7 t;l :tl(57771,--~77717V1a--~,7/i)

and, if it decides them positively, it forces that there exists a sequence (g(v): v < g1)

witnessing this. Define—
P&t v) =06 nl) T a(n)

I p&np,.om) [ pEnhs o m) \ & € e(§mme) s or p(&mi,...ml) [k
p& ..., \E€e(&n),...,n.) but the statements—

Fy(§omuy ey, v) =W 0OVt =48, -, Vi)

are decided negatively, let p (&, 711, . .., 1%, 1) be an arbitrary condition above p (§, 7}, ..., 1.).
We argue that—

{&¢<rip(&d(fa(©). . d(f5.(€)  tar (€)) Tuayo)lF
p(&d(fa(€) - d (fo.(8)) sy (€)) \ 1 () €
e (&d(f3(8) ;- d(fa(8)), Has (§)) and
p(&d(fs(€) .- d (fo, (&) s par (€)) € G}

First, by the previous point,

e(&d(f5(9) - d(fa(9)))} €W

By the properties of the set e (£, d (fﬁi (€),...,d(fs(£))), the condition—

p(&d(f5(€)-- - d ([ (6)) Te

decides the statements—

Fu(&d(f3(9),.-.d(f3,9)) =WgnV

~Y

and—

A T =t (6,d (4 (O) s d (f(6)))
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Claim 8 For a set of £&-s in W, the above statements are decided in a positive way.
Before the proof of the claim, let us proceed with our argument. By the claim and
definition 3.20,

—~

p (57 d (fﬂi (5)) 3o ad (.fﬁg (5)) s Moy (f)) =D (57 d (fﬂi (5)) g ad (.f,Bg (g))) [ual(é) q (:u’Otl (5))
and, by the properties of the set e (f, d (fgi(f)) oo, d (fﬁé (f))), the condition—

p(&d(fp(8) .- d(f5(8))

forces that—

—~

p(&d(fa8), - d(f5,(8) 11 (&) =1 (& d (f5(€) - d (f5,(6))) Nhaye) @ (1ar(§)) €G

and—

p (fa d (fﬂi (5)) yee 7d (fﬁg (5)) y Moy (5)) \/’LOél (5) =4 (IuOll (f)) €
e (&d(£5(6) .- d(£5(9) 1 (€))

Thus, for a set of &-s in W,
€ (€7d(fﬂi(§)) 77d(f/3§(§)))} eW

Which finishes the second step. Thus, it remains to prove claim 8:

Proof. Let us prove first that—
{S <KIp (€7d (fﬂi(g)) 3. ad (fﬂg(f))) fg”‘ Fy (f,d (fﬁi(g)) e 7d (fﬁ§(£)>) = Ii/glmv}
Assume otherwise. Then in M [ (G)],

jW (<§7T]17 cee 7773> = Fl ((577]17 s 7ns>)) (’Qaj(),a (ﬁi) yroe 7j0,a (5;)) 7é

=W, (6 (15 ©)d(15,)) W

but both sides are equal to k; (Uua1)7 contradicting property (D) of the embedding
K,

Now let us prove that—
{&€<rip(&d(fa(8),....d(fs(8)) Ik
tgl =t (é.ad(fﬁi(g))ﬂ7d(fﬁé(§)))}
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Assume otherwise. Then the condition s = jy (f P (5, d (fﬁi (f)) oo d (fgg (f)))) (k)

forces that—
tzal (ftay) 7é kal (tOél) =l

Note that s € jw(G) Ik, (ua,
of ko, (ftay) below o, in M [jw(G)]. Thus, one of the sequences ¢

y and to, Is the initial segment of the Prikry sequence

S
ko (“al
a strict initial segment of the other. By the second requirement in definition 3.20

) and t,, is

, S rkal(ual) decides which one is an initial segment of the other. Now this yields a

contradiction:

L. If ¢4, is a strict initial segment of ¢} (o)’ Recall that s = kg, (s"), where—
@ aq

1

s = Joy (€1, ms) = D (&, -, 1s)) (’{vj(),m(ﬁi)? s Joan (5;))

Then s’ [, forces that t,, is a strict initial segment of t‘;/al. Work over M,,.
Let v < pqa, be an ordinal, forced by s’ [,,, to be a bound on the first ordinal in
tf:al \ ta, (such a bound exists since the forcing jo, (P) [u,, 18 fa,-c.C. in M,).
Applying k., : M., — M, v < g, is an upper bound on the first ordinal in

tS
ko (Hay
above 7. A contradiction.

) \ ta,. However, in M [jw (G)], this element is pu,, itself, which is strictly

2. Else, t7 (o) is a strict initial segment of t,,: Denote 7 = max (t,,). Then,
by definition 3.20, s forces that the initial segment of the Prikry sequence of
Koy (Hay) s T] (o) followed by an element strictly above 7; in particular, ¢, is

not an initial segment of the Prikry sequence of k,, (tta,) in M [jw (G)], which is

a contradiction.
O of claim 8.

Assume now that 1 < i < k is arbitrary, and for every &, ny,...,1%,v1,..., V4, & con-

dltlonp(é')niv s )77;77/1) .- '7Vi) is defined. Denote gi+1 = Gi+1 (577]37 s 77];77/17 . '7Vi)'

For every v;11 < ¢i+1, let us define the condition p (&, n),..., 0L, v1, ..., ViyVip1). If
p(S?Uia"'>n;7V17"'7Vi) [Vi”_p<5777£7'--777;71/17"'71/1')\]/2' S e(gan/la"-an;yla'-wyi)
and p(&,ny,...,n%v1,...,14) [, forces the statements—

F/L'Jrl (577717~~-;77Z7V17~--7Vi) :ng+1ﬂv, tgzdrl :ti+1 (5,7]1,...,7][,V1,...,l/i>
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then p (&, m,...,nL,v1,...,v;) |, forces that there exists a sequence (q(v): v < g;+1)
witnessing this. In this case, define—
p(éan/h s 7“?97”17 s 7Vi7Vi+1) :p(£77]17 s 77];71/17 s 7V’£) waAQ(ViH)

Else, let p(§,7,,...,m. 1, ..., Vi, Viy1) be an arbitrary condition which extends the
condition p (&, 7y, ..., 0k V1, ..., 4).

Let us argue now that—

{e<rp(&d(fs(8), - d(f,(8) s 1on (&) - 1y (€), fheay iy (€)) Tha, +1(s>'F
p(&d(f3(9) - d(f5,(6) s 1o (€)s - s bar () Harer () \ Mg (
e(&d (fa(8) - d(f3.() s an (€): - s B (§), Hayy, (€)) and-
p(&d(f5(8) s d (f,(8) s Hon (§)s - s tai (§); My, (§)) € G}

{E<rip(&d(fa() .- d(f5(6) s Har (&) - Hai(€)) Tuayie)lF
p (é.vd (fﬁ{(f)) g 7d (fﬁg(f)) 7:“’041(5)7 ce 7Mai(§)) \:U’Ocz(f) €
€ (Svd(fﬂi(g)) 7ad(fﬁ§(§)) 7Ma1(§)7""ﬂai(§))} cew

Thus, for a set of £-s in W, the condition—

p (ga d (fﬁi (5)) Yo 7d (f,Bg (5)) y Moy (5)7 s 7“%(5)) rﬂai(f)

decides the statements—

E-I—l (éad (fﬁi(§>> LA 7d (f5§<§>) 7/~La1<§>’ te 7:“’0@(5)) =

Y i (€5 ©) (1Ot @) Y
and-—-
P(6(1;(©) (S5, ) s @t @)
gi+1<€,d<f53 (f)) ..... d(fﬁg (5))%11(5) ..... Mai(f)) = tin (57 d (fﬂl (5)) - d (fﬁé (£)> da (5)7 ro e (5))

arguing as in claim 8, both statements are decided positively for a set of &-s in W.
Thus,

7d (fﬁi(é)) ) >d (fﬁg(€)> ’Mal(g)a cee 7“ai(€)auai+1(€)) =

P(&d(f5,(8) - d (f5:(8))  Har (€)s - 10, (8)) Tharr© 4 (Hainn(§)
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and the condition ¢ (fta,,, (€)) is forced, by—

p (f,d (fﬁi(g)) ) >d (fﬁé(g)) aMal(g)v SR ’Mai(£>)

to be in—

G \ /’Lai+1(€) ne (g’d (fﬁ{(f)) e 7d (fﬂ;(f)) 7:“’&1(5)7 s 7Mai(§)7uai+1(§))

Therefore,
{E<k:p (57 d (fﬁ{ (f)) yooesd (fﬁé(g)) s Moy (), oy (§), :uaz+1(§)) rualJrl(f)“_
p (57 d (fﬂ{ (5)) e ad (fﬂ;(g)) 7:u0t1(§)7 e ’Maz(g) Hayq (6)) \M%-H( ) S
€ (57 d (fB{ (g)) ) ad (fﬁg (f)) » Mo (5)7 e ’Nocb(g) Moy (5)) and-
p (57 d (f,@{(f)) yeoe e 7d (f/o’g(f)) 7:“011(6)7 e auaz(g) Hoiys (6)) € G}
as desired.

O of lemma 3.22. O of theorem 3.18.

3.5 Properties of £,

In this subsection we complete the proof of properties (A) — (D) of k,. After that, we will

prove in lemma 3.26 that k.«: M.« — M is the identity, and conclude the proof of theorems
3.13 and 3.12.

Lemma 3.23 p, = crit(ky) is measurable in M,. Moreover, p, is the least measurable

above sup{pg: 5 < a} which has cofinality above k in V.

P?”OOf. Write Ho= [f]W and Ho= ja (h) (/iajo,a(ﬁl%"wjo,a (Bk)?Man"'a,uam)a for some
feVIG], heV, pi,...,[0 generators of 1 and oy < ... < o < .

Since p < k, (1), we can assume that for every £ < k&,

f(g) < h(f,d(fﬁl(g)) yoroee 7d(f/31(§)) 7Ma1(§)7 e 7”6%(5))

and let p € G be a condition which forces this. Given &,ny,...,m, 1, ...,V consider the

e(&,m,...,m,v,...,vp) ={r € P\ vg: for some bounded subset A C h(§,m1, ..., M, V1,5 .-y Vi),

TH—rJi(f)EA}
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Then e (&,m1,...,m,v1,. .., V) is <*-dense open above conditions which extend p and force
that—

<d(f/31<€>> yree 7d(f,31(£)) 7#(11(5)7 s mu/ozk(f» = <7717 N/ | RR 4 T Vk)
By Theorem 3.18, the sequence (5, ..., ;) can be extended to a sequence (f1,..., ), and

p can be extended to a system of conditions,

D&M,y My Viy ey V) &M, ey s < By < oo < Vg < K)

such that, for a set of &-s in W,

p (fad (fﬁi(f)) N (fﬁé(g)) 7Ma1(5)7 s 7:uOlk(€>) r#ak(f)“_
p(&d (for(€)) s sd (f5(8)) s 1an () - s 110y, (€)) \ h1ay (€) €
€ (§7d (fﬁ{(g» g 7d (fﬂ;(g)) 7:“’041(5)7 s 7/“’Lak(€))

and-—
p(gad(fﬁi(g))a7d<fﬁg(€)) 7”Oél(£)"">ﬂock(£)) €

Assume now that (&, m1,...,ns,11,. .., V) are given, such that—

p(ﬁ?ﬁla"-ansvyla"'vl/k) [Vk”_p(fanlw"777&’/17"'ayk)\Vk’ €
e(ganla"'ansayla"'ayk)

Let A be a P, -name, forced by p (§,m1,...,7s, V1, .., ) [, to be a witness to the fact that
p (&7, 0)\ v € e (&, 7, 7). Namely it is a bounded subset of h (£, 7, 7), and p (§,7, V) \ v Ik

JE) €A

Let A (£, 7,7) be the set of ordinals v < h(&,17,7) such that, some r > p(&,7,7) [,
forces that v € A. Since vy < h (&, 7,7), A(E,7,7) is a bounded subset of h (£, 7, 7). The
function (£, 77, V) — A (&,7, V) lies in V.

By the results of theorem 3.18, there exists a set of &-s in W for which—

G 2p (&d (f5(€) s d (f5(8)) s 1 (€)- - s 11y (€)) 7
f]\i(g) €A (gad(fﬁi(g)) 77d(f,3;(£>) 7111061(5)7"'7:[%41«(5))

Thus, in M [jw (G)],

flw €160 A& d (f5(9) .-, d (f5,(8)  1ar (€), - - 110, ()], =
koc (joz (<§7ﬁ> ﬁ> = A (57777 ’7)) ("iajO,a (51) gt 7j0,a (6;) y Mag sy -+ nuak)) g Im (ka)
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where the last inclusion follows since—

ja (<£7ﬁ7 ﬁ) '—> A (57 777 ﬁ)) (K'/7..70,CV (51) yc 7j07a (/8;) 7/’La17 ttt 7/’Lak)

is a bounded subset of—

Mo :ja (<£7ﬁ7 ﬁ) = h(£>ﬁ7 ﬁ)) (ijo,a (ﬁi)?"'?jo,oé (62) 7“0417"'7:“0%)

which is crit (k,).
Thus we proved that u, € Im (k,), which is a contradiction. [

Lemma 3.24 p, appears in the Prikry sequence added to ko (p) in M [jw (G)].

Proof. In M [H], denote by t* the initial segment of the Prikry sequence of k, (pn) which
consists of all the ordinals below ji,. Denote by n* the length of t*. Let (&, 77, V) — t* (&, 1], V)

be a function in V such that—

tr = jOé (<57ﬁ7 77> =t (gvﬁa 77)) (/i,j()@ (51) g 7j0,04 (/61) y Hag s« - - 7”Oék)

(we assumed here that ¢* can be represented using the same generators as . If this is not
the case, modify the set of generators).

We can assume that for every (£,7,v), t*(£,7,7) is a sequence of length n*. Since
ko (t7) = 17,

(€=t (& d(f5.(6) - d(f5,(8)) s o (€), - s e (E))]y = 7

In V' [G], denote, for every & < k,

ta(€) =the (n* + 1)-th element in the Prikry sequence of
h (é; d(fﬂl(g)) yee 7d(f51(€)) >:uc¥1(f)> s ,Mak(f)>

Clearly [€ = 11a(&)]y > Ha-
We argue that equality holds. We will prove that for every n < [£ = pa(§)]y, 7 < fa-

Assume that such 7 is given, and let f € V' [G] be a function such that [f];;, = 7. Then we

can assume that for every £ < k,
f(€) < pal§)

and let p € GG be a condition which forces this.
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For every &, 17, V, consider the set—

e, m,v)={re P\v: Iy <h(&q,v), rik if t* (£ 7,7)is an initial segment of the
Prikry sequence of h (£, 7,7), then f(§) <~}

~

then e (f_: Viyenns ﬁk> is <* dense open above conditions which force that—

<d(f/31<5>>7""d(fﬁz(é))7#041(5)7"'?”(%(5» = <771>"'77717V1>"'7Vk>

This, since, given a name for an element f (&) which is forced to be strictly below p, (),
(which is the element which appears right aft’\ér t* (&, 17, V) in the Prikry sequence of h (€, 17, 7)),
the element can be decided by taking a direct extension.

By Theorem 3.18, the sequence (51, ..., ;) can be extended to a sequence (f1,...,[.), and

p can be extended to a system of conditions,

P& M, My V1o s V) M, s < Ky < oo < Vg < K)

such that, for a set of £&-s in W,

p ({,d (fﬁi(g)) soeesd (fﬁg(f)) 7#@1(5)7 SR v:uak(f)) ruak(é)“_
p (f,d (fﬂ{(f)) 7"'7d (fﬁg(f)) >/La1<5)7 s 7lu01k-<£)) \H’Oék(g) S
e(fvd(fﬂ{(f))aad(fﬁé(f)) num(g)""a:uak(g))
and-—
p(&d(f5(8) s d (f,(8) s ar (§), - s 110, (§)) € G

Assume now that (£, 7,7y = ({,m1,...,ns, V1, ..., V) are given, such that—

p (&7, 7) Ly Jrp (& 7. 7) \ v € e (&, 7], D)

Let v be a P, -name, forced by p (§,m1,...,0s,V1,...,Vk) |4, to an ordinal below h (&, 7, V),
such that p (§,7,7) \ vk IF f(§) < 7. Let v (&7, 7) be the supremum of the set of ordinals

—

T < h(&,17,7) such that, some r > p(&,17,7) [, forces that y=T Since v, < h(&,17,7),
v (&1, V) < h (&7, V). The function (£, 77, V) — v (&, 7, V) lies in V.
By the results of theorem 3.18, there exists a set of £-s in W for which—
G op (57(1 (fﬁi(g)) NN (fﬁé(g)) a;uoq(g)v s a,uock(€>> s
if t* (57 d (fﬁi(f)) soeend (fﬁg(f)) 7”041(5)7 s 7uak(€))
is an initial segment of the Prikry sequence of
h(&d(fo(€)) s s d (f5(8)) s 1 (€):- -+ s 11y (€)) , then
FO <A (Ed(f5©) 1o d (F(O) s ttar O 10y (€))

46



Thus, in M [jw (G)], where indeed t* is an initial segment of the Prikry sequence of k, (pta),

[f]We[fH’Y(g d(fﬂi(g)) d(fﬁg(f))ap“m(f)?v:uak(f))]W:
ko (o ((&: 77, 0) = v (§,77.7)) (K, Jo,a (B1) s+ Joa (By) s Has - -+ Moy ) < Ha

as desired.

Lemma 3.25 Let U,, = {X C fio: fta € ka(X)} N M,. Then U,, € M,. Furthermore,
ko (Uy,) = jw (6 = Us) (ko (1ta)), where, for every 6 € A, Us = WsNV, for Wy which is the

measure used in the Prikry forcing at stage § in the iteration P.

Proof. We first prove that jy (6 — Us) (ko (o)) € Im (ky). Then, we will prove that the
measure F' € M, for which jy (0 — Us) (ko (fta)) = ka(F) equals to Uy, .

In order to prove that jw (6 — Us) (ko (ita)) € Im(k,), we prove that there exists a family
F € M, of measures on pi,, with |F| < pia, such that jy (0 — Us) (ko (1a)) € ko(F) = KL F.

Fix, in V, an enumeration W of all the normal measures on measurable cardinals below
r. For every (£,1,7), let v (&, 7, ¥) be the index of Uy 7 in this enumeration. Note that
each measure Uy 7 belongs to V, but the sequence (Up ¢, : &, 7,V < k) might be external
to V. So the function (£, 7, V) — v (&, 7, V) doesn’t necessarily belong to V.

Fix (¢,77,7) and consider the set—

e (&1, V) ={r € P\ v: there exists a set of ordinals A of cardinality strictly smaller than
h (&1, 7), such that r [heq0lF v (§,7,7) € A}

Then e (§,77,7) C P\ v, is <*-dense open, since P [4¢ .5 is b (&, 7, v)-c.c
Now apply theorem 3.18 and argue as in the previous lemma: There exists (in V) a
mapping (£, 7, V) — A (£, 7, V) such that, in M [jw (G)],

£y (&d (£5,9) - d (f4(9) ,um(&),...,uak(@)]w =
(£ A (f5(9) . d (f5(6)  Har (€)1, ()]
K2 (o (6,71, 5) = A(E,7.9)) (K, Jo.a (B - Joa (BL) s lars - -+ Hay)

In M,, let F be the set of measures on pu, which are indexed in the enumeration j, (W)

by an index in the set A = j, ((¢,7,7) — A&, 7,7)) (K, Jo.a (51) -1 Jo.a (BL) s s - - - 5 Hay,)-
Note that |A| < po and thus |F| < po. Then jy (6 — Us) (ko (io)) is enumerated by the

ordinal—

[é = (€7d (fﬂi(g)) e 7d (f52(£)> 7:“’01(5)7 s 7/"Lak(£)>:|W € kZ‘A
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and thus jw (0 — Us) (ko () € ELF | as desired.
Let F' € M, be a measure on i, such that—

w (5 — U6) (ka (:ua)) = koz(F)

Let us argue that F' = U, . It suffices to prove that /' C U,,. Fix a set X € F. Assume
that—

—]a(<£ 777 > HX(& 777 )) ("iajO,a (51)%"7]‘0,04 (ﬁl)vﬂap"'?“ak)

(We assumed again that X can be represented using the same generators as ji,. If this is
not the case, modify the set of generators of pi, ). Then kq(X) € jw (6 — Us) (ko (11a)). As
in the previous lemma, let n* be the length of ¢*, the initial segment of the Prikry sequence

of kq (ft) below p,. For every (&,17, V), let—

e(&,7,0)={r e P\vi:7 Ineqinll X (&7.7) € Uneiin,
if it decides positively, then r [¢q0)lt Apeqzn C
X (&17,0); else, v [neqmlF Ah(gﬁﬁ is disjoint
from X (&,77,7). Moreover, 7 |47 1h (¢, fn,ﬁ)) >n',
and if it decides positively, then there exists a bounded subset

A (&, 7,7) C h(&17,7) for which r [¢ 75 the (n* 4 1)-th
element of tj, . - - belongs to A (£, 7, 7)}

By theorem 3.18, there exists a larger set of generators fi,..., 5. and, for every (£,7,7), a
condition p ((§, 7, 7)), such that, for a set of &-s in W,

p (éad (fﬁ{<€>) 7"'7d (fﬁé(f)) 7Ma1<€>7 s 7:u01k(€)) ruak(ﬁ)“_
p (gad (fﬁ’i(g)) 3 ad (f5'9<€>) 7/vL041<€>7 s 7lu0lk(€)) \/’Lak(g) <
€ (g’d (fﬁ{(g)) yroe 7d (fﬁg(f)) 7:“’&1(5)7 s 7#@1@(5))

and-—
p (f,d (fﬁi(g)) o 7d (fﬁ;(g)) 7”041(5)’ s aﬂak(€>) €G
Let us argue first that for a set of £&-s in W,
p (57 d (fﬁi (6)) g 7d (fﬁg (5)) » Moy (5)7 ey May, (f)) fpak(g)

decides that—
I (tz(f,d(fgi (f)) ~~~~~ d(fgg (5)) sy (€)-- oty (f)) ) S n*
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Indeed, assume otherwise. Let A* (&, 7, V) be the bounded subset of h (£, 77, ) which consists
of all the ordinals, which are forced by some extension of p(&,7,7) [,, to be in A (&, 7, 7)
(whenever p (€, 77, V) forces that the length of tfl(é?;?) is greater than n*). Then, in M [ji (G)],

Ha € koé (joz (<£7ﬁ7 77> = AT (faﬁv ﬁ)) (ijO,a (Bi) Yo 7j0,a (6;) yHags -+ - 7:“’0%))

But this is a contradiction, since j, ((¢, 7, 7) — A* (§,7, 7)) (K, Jo.a (B1) s - - Joa (BL) s Hans - - - 5 Hay)
is a bounded subset of .

Therefore, we can assume that—

p(&d(f5(8) - d (f5,(8)) s 1ar (€), -+ 1o (§)) Thaye)

forces that—
. ( p(6:d( a7 (©)) (£ ©)) iy () uak(é))> <

Denote now p* = [§ = p (&, d (fp;(&)) -, d (f5,(8))  Haa (€) -+ 110, (€)) ]y Then p* Ty o)

forces that u, € éia ()" By the definition of the sets e (&, 17, 7), the set éiu (1) 18 forced to
be either disjoint or contained in k,(X). Since ku(X) € jw (6 — Us) (ko (tta)), it cannot be
disjoint (again, by the definition of e (¢, 7, 7)). Therefore i, € ko(X) and thus X € U, , as
desired. L.

Finally, let us argue that j.« = jw [v. Recall that x* = i(k), and note that x* =

sup{pta: o < K*}.
Lemma 3.26 M = M,+, jw(k) =i(k) and je = jw [v.

Remark 3.27 In particular, if i = jy (namely W is simply generated) then jy (k) = ju (k).
On the other hand, possibly jy (k) < i(k), and then jy (k) > jy(k).

Proof. Define, similarly to k,: M, — M, the embedding k,«: M.~ — M as follows:

kﬂ* (]H* (f) (K7j0,l€* (51>7 s 7j0,ﬂ* (5l> y Haq s - - - 7”0419)) =
Jw (f) (’iv d ([flﬁ(g)]w) ye e 7d ([fﬁz(g)]w) y Moy - - - nuam)

for every f € V', By,..., 3 generators of i and oy < ... < a, < k*. Clearly crit (k) > k*.
It suffices to prove that k- is the identity function.

Let 7 be an ordinal, and let f € V' [G] be a function such that [f];;, = 7. By the x-c.c.
of P, there exists F' € V such that for every £ < k, f(§) € F(§) and |F(§)| < k. Therefore,
in M [jw(G)],

7= [flw € [Fly = kwe (o= (F) (%))
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But—
|76 (F)(K)| < Jur (k) = K® < crit (ki)

so n € Im (k,+) as desired. O

3.6 On existence of N

A natural question in view of the main results on the structure jy, is whether always there
exists N,"N C N such that M is obtained from it by iterating normal measures only. We
do not know the answer in general. However, it turns out to be an affirmative provided some

anti large cardinal assumptions and V = .

Proposition 3.28 Assume =0 and V = K.

Let U be a normal ultrafilter over k and A C k be a set of measurable cardinals which is not
in U. Force with an Easton support iteration P of the Prikry forcings over A. Let G C P
be a generic.

Suppose that, in V|G], there is a normal ultrafilter W which extends U .

Then there are N,i :V — N which satisfy the conditions of theorem 2.7 such that jy [V =

koi and k is formed by iterating normal measures only, starting from N.

Proof. As in subsection 3.1, we analyze j := ji | K.
By elementarity, j : K — (K)MW and My is a generic extension of (K)MW by an Easton
support iteration of Prikry forcings with normal measures in j(A).

By Mitchell [6], j is an iterated ultrapower of I by its measures and extenders. Recall

that WNK =U, and so, U ={AC k| AeV,k € jw(A}. So, this iterated ultrapower
starts with U or with an extender F' which normal measure is U.
Note that Mp must be closed under k—sequences. Otherwise, there will be a set of ordinals
a, |a| < k which consists of generators and which is not in Mg. The further Easton support
iteration of Prikry forcings will not be able to add such a. Thus, by our assumption, the
length of F' must be below first measurable cardinal above x in Mp. The iteration of Prikry
forcings above k does not add new bounded subsets below the first measurable > k.

By the same reason, extenders used to continue the iteration must be k—closed.

None of them can be used infinitely many times (or infinitely many extenders cannot be
used), since otherwise, w—sequences which cannot be added by an Easton support iteration
of Prikry forcings, will be produced. It follows from the strong Prikry condition of the

forcing, see O. Ben-Neria [1].
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This leaves us with a finite iteration by k—closed extenders (measures).

It is the first part of the iteration.

The rest consisting of iteration of normal measures, each of them is applied w—many times.

Take N to be the first part of the iteration and ¢ : T — N be the corresponding embedding.

O
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