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Abstract

We show that a Prikry sequence can have several grounds, answering
a question of Goldberg and Ben-Neria. This is part of a broader range
of applications of products and iterations of forcings with nonstationary
support.

1 Introduction

For a normal measure U on a measurable cardinal κ, denote by PU the standard
Prikry forcing with respect to U . Recall that whenever G ⊆ PU is generic over
a ground model V , G induces an associated generic Prikry sequence,⋃

{t ∈ [κ]<ω : ∃A ∈ U ⟨t, A⟩ ∈ G}.

The Prikry sequence associated to a PU -generic set is an ω-sequence that is
almost contained in every set in U .

Conversely, working in an arbitrary ZFC model V , an ω-sequence ⟨κi : i <
ω⟩ ∈ V is a Prikry sequence over some inner model V ′ ⊆ V if κ := supi<ω κi is
a measurable cardinal in V ′, U ∈ V ′ is a normal measure on κ, and {κi : i < ω}
is almost contained in every set in U . In this case, by the Mathias criterion (see
[1, Theorem 1.12]), ⟨κi : i < ω⟩ is the generic Prikry sequence associated with a
PU -generic filter over V ′.

Ben-Neria and Goldberg asked whether a single Prikry sequence can be
generic over two distinct grounds. In this note, we give a positive answer to this
question.

Theorem 1.1. Assume GCH and the existence of a measurable cardinal. Then
there exists a ZFC model V ∗ and an increasing sequence ⟨κi : i < ω⟩ ∈ V ∗,
such that V ∗ has two distinct inner models V0 and V1 satisfying the following
properties:

� κ = supi<ω κi is measurable in both V0 and V1.

� There exists a normal measure W0 ∈ V0 such that ⟨κi : i < ω⟩ is PW0
-

generic over V0.
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� There exists a normal measure W1 ∈ V1 such that ⟨κi : i < ω⟩ is PW1-
generic over V1.

� V ∗ = V0[⟨κi : i < ω⟩] = V1[⟨κi : i < ω⟩].

2 Preliminaries

We present our main forcing and a series of Lemmas before the proof of Theorem
1.1.

Definition 2.1. Denote I = {α < κ : α is inaccessible}. We say that a set A ⊆
I is nowhere stationary if for every regular cardinal α, A∩α is a nonstationary
subset of α. Let κ be a Mahlo cardinal. For every α ≤ κ, let

Pα = {f : α → 2: f is a partial function, dom(f) ⊆ I ∩ α is nowhere stationary}.

Throughout this note we let P = Pκ. An equivalent presentation of P is
as a nonstationary support product forcing, P =

∏NS
α∈I Qα, where, for each

α < κ, Qα = {0Qα
, 0, 1} is an atomic forcing (in which ”0”, ”1” are incompatible

elements). We refer to [2] for the definition of nonstationary support product
forcing ([2, Section 1]), the proof that P preserves cardinals ([2, Corollary 1.6]),
and the proof of the following Fusion Lemma ([2, Lemma 1.3]).

Lemma 2.2. (Fusion Lemma) Let p ∈ P be a condition, and ⟨d(α) : α < κ⟩
a sequence of dense open subsets of P. Then there exists p∗ ≥∗ p and a club
C ⊆ κ such that, for every α ∈ C,

{r ∈ Pα+1 : r ∪ (p∗ \ α+ 1) ∈ d(α)}

is a dense subset of Pα+1 above p∗ ↾ (α+ 1).

Lemma 2.3. Let κ be a measurable cardinal, and fix a normal measure U ∈ V
on κ. Let G ⊆ P be generic over V . In V [G], κ remains measurable. Further-
more, for each k < 2, the set

U ∪ {α < κ : G(α) = k}

generates a normal ultrafilter on κ in V [G].

Proof. (Sketch; the complete argument can be found in [2, Lemma 2.3]) For
every k ∈ {0, 1},

Hk = {q ∈ jU (P) : ∃p ∈ G (q ≤ jU (p) ∪ {⟨κ, k⟩})}

is jU (P)-generic over MU ≃ Ult(V,U). In fact, any jU (P)-generic set which
contains jU [G] has the form Hk for some k ∈ {0, 1} . In particular, jU lifts in at
least1 two ways to an ultrapower embedding via a normal measure; indeed, for

1Actually, if the forcing is being done over V = L[U ], or modified by adding a gap below
κ (for instance, by initially forcing a Cohen subset of ω and then forcing with P) there are
exactly two normal measures on κ in the generic extension.
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every k ∈ {0, 1}, U lifts to the measure Uk ∈ V [G] which is the normal measure
derived from the lift of jU which maps G to Hk.

We argue that each Ui is generated by U and {α < κ : G(α) = k}. Let Ȧ be
a Pκ-name for a set in Uk. By the definition of Uk, there exists p ∈ G such that
jU (p) ∪ {⟨κ, k⟩} ⊩ κ̌ ∈ jU (Ȧ). Thus,

{α < κ : p ∪ {⟨α, k⟩} ⊩ α̌ ∈ Ȧ} ∩ {α < κ : G(α) = k} ⊆ A

and the set {α < κ : p ∪ {⟨α, k⟩} ⊩ α̌ ∈ Ȧ} belongs to U .

3 Proof of the main theorem

Proof of Theorem 1.1. In V , let U be a normal measure on κ. Let P be the
forcing from definition 2.1. Let G ⊆ P be generic over V , and denote V0 = V [G].
Let W0 ∈ V0 = V [G] be the measure generated by U ∪ {{α < κ : G(α) = 0}} as
in Lemma 2.3.

Force with PW0
over V [G], and let ⟨κn : n < ω⟩ be a generic Prikry sequence

for W0 over V [G]. By removing an initial segment from the sequence, we can
assume that for every n < ω, G(κn) = 0 (since {κn : n < ω} is almost contained
in {α < κ : G(α) = 0} ∈ W0).

Our goal now is to find, in V0[⟨κi : i < ω⟩], a P-generic set G′ over V , which
induces an inner model V1 = V [G′] of V0[⟨κi : i < ω⟩].

Work in V0[⟨κi : i < ω⟩]. For every p ∈ Pκ, let p′ be the function obtained
from p by switching the bit p(κn), for every n < ω for which κn ∈ dom(p).
A key remark is that only finitely many bits in dom(p) are changed, because
⟨κn : n < ω⟩ is almost contained in a club disjoint from dom(p). Therefore, for
every p ∈ V , p′ ∈ V as well.

In V0[⟨κn : n < ω⟩] define

G′ = {p′ : p ∈ G}.

Lemma 3.1. G′ ⊆ Pκ is generic over V .

We will need some notations and a technical argument that involves fusion
for the proof. Fix α ≤ κ, n < ω and sequences β⃗ = ⟨β0, . . . , βn−1⟩, k⃗ =
⟨k0, . . . , kn−1⟩ such that β0 < . . . < βn−1 < α and for each i < n, ki ∈ {0, 1}.
Let r ∈ Pα be some condition. Let rβ⃗,⃗k ∈ Pα be the condition obtained from r

by adding β0, . . . , βn−1 to the support (if needed) and setting rβ⃗,⃗k(βi) = ki for

every i ≤ n, and rβ⃗,⃗k(ξ) = r(ξ) for every ξ ∈ dom(r) \ {β0, . . . , βn−1}.2
In our proof of Lemma 3.1, the main property that we will have to verify

is that for every dense open D ⊆ Pκ, D ∩ G′ ̸= ∅. For that, we will use the
following technical lemma.

2We will actually be interested in the case where k⃗ is a sequence of 1’s, but we chose to
work in this more general context.
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Lemma 3.2. Let D ⊆ Pκ be a dense open subset. Then D∗ is dense, where D∗

is the set of conditions q ∈ Pκ for which there exists a club C ⊆ κ such that for
every α ∈ C and β⃗ = ⟨β0, . . . , βn−1⟩ ∈ [α]<ω,

e(α, β⃗, q) = {r ∈ Pα+1 : ∀k⃗ = ⟨k0, . . . , kn−1⟩ ∈ {0, 1}n, rβ⃗,⃗k ∪ (q \ (α+ 1)) ∈ D}

is a dense open subset of Pα+1 above q ↾ (α+ 1).

Proof. For every α < κ, let

d(α) = {p ∈ P : for every β⃗ ∈ [α]<ω, the set

{r ∈ Pα+1 : ∀k⃗ ∈ {0, 1}lh(β⃗)
(
rβ⃗,⃗k ∪ (p \ (α+ 1)) ∈ D

)
}

is a dense open subset of Pα+1 above p ↾ (α+ 1)}.

First, let us explain why it suffices to prove that d(α) ⊆ P is dense open for
every α < κ. Assume that this has been proved. Fix a condition p ∈ P. We
argue that there exists q ≥ p in D∗. Indeed, by the Fusion Lemma 2.2, there
exists q ≥ p and a club C ⊆ κ such that, for every α ∈ C,

{r ∈ Pα+1 : r ∪ (q \ (α+ 1)) ∈ d(α)}

is dense above q ↾ (α + 1). Fix α ∈ C and β⃗ ∈ [α]<ω. We argue that the set

e(α, β⃗, q) is a dense open subset of Pα+1 above q ↾ (α + 1). Since D is open,

e(α, β⃗, q) is open, so we concentrate on density. Assume that r ≥ q ↾ (α + 1).
Since α ∈ C, we can find r′ ≥ r such that r′ ∪ (q \ (α+ 1)) ∈ d(α). By the

definition of d(α), we can find r′′ ≥ r′ (which depends on β⃗) such that for every

k⃗ ∈ {0, 1}lh(β⃗),
r′′

β⃗,⃗k ∪ (q \ (α+ 1)) ∈ D.

It follows that r′′ ∈ e(α, β⃗, q) and extends q ↾ (α+ 1), as desired.
Thus, it remains to prove that for every α < κ, d(α) is dense open. Fix

α < κ. As before, it’s clear that d(α) is open, so we concentrate on density.

Fix p ∈ P and an enumeration ⟨β⃗i : i < α⟩ of [α]<ω. We construct an increasing
sequence of conditions ⟨si : i < α⟩ ⊆ P \ (α+1) extending p ↾ (α+1), such that
for every i < α, the set

{r ∈ Pα+1 : ∀k⃗ ∈ {0, 1}lh(β⃗i)
(
rβ⃗i ,⃗k ∪ si ∈ D

)
}

is a dense open subset of Pα+1 above p ↾ (α+1). Once the sequence ⟨si : i < α⟩
is constructed, take s∗ =

⋃
i<α si (note that P \ (α+ 1) is sufficiently closed to

ensure that s∗ ∈ P \ (α + 1)). Then q = (p ↾ (α + 1)) ∪ s∗ is an extension of p
in d(α), as desired.

For the construction of s⃗ = ⟨si : i < α⟩, assume that i < α and s⃗ ↾ i was
constructed. Our goal is to construct a condition si with the above-mentioned
property. First, let s∗i =

⋃
j<i si (and, in the case where i = 0, let s∗0 =
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p \ (α+1)). Enumerate ⟨rn : n < |α|+⟩ all the conditions in Pα+1 which extend
p ↾ (α + 1). We define an increasing sequence of conditions ⟨sni : n < |α|+⟩ ⊆
P \ (α+1) extending s∗i such that, for every n < |α|+, there exists an extension

r′n ≥ rn in P ↾ (α+ 1) such that for every k⃗ ∈ {0, 1}lh(β)i ,

(r′n)
β⃗i ,⃗k ∪ (sni ) ∈ D.

Once the sequence ⟨sni : n < |α|+⟩ has been constructed, let si =
⋃

n<|α|+ sni ,

and note that si ∈ P \ (α + 1) is as desired. Thus, it remains to define the
sequence ⟨sni : n < |α|+⟩. Assume that ⟨smi : m < n⟩ has been constructed for
some n < |α|+. Let s∗ni =

⋃
m<n s

m
i ∈ P \ (α + 1). We argue that there exists

r′ ∈ Pα+1 and s′ ∈ P \ (α + 1) such that r′ ≥ rn, s′ ≥ s∗ni , and for every

k⃗ ∈ {0, 1}lh(β⃗i),

(r′)β⃗i ,⃗k ∪ s′ ∈ D.

Once we prove that such r′, s′ exist, we take r′n = r′ and sni = s′.

Thus, it remains to construct r′, s′ as above. Fix an enumeration ⟨k⃗ℓ : ℓ < ℓ∗⟩
of {0, 1}lh(β⃗i) (here, ℓ∗ = 2lh(β⃗i), and recall that β⃗i is finite and ℓ∗ is a natural

number). We construct a pair of finite sequences of conditions, R⃗ = ⟨Rℓ : ℓ <

ℓ∗ + 1⟩ ⊆ Pα+1 and S⃗ = ⟨Sℓ : ℓ < ℓ∗ + 1⟩ ⊆ P \ (α + 1) such that R0 = ri,

S0 = s∗ni , the sequence S⃗ is increasing, and the sequence R⃗ satisfies that each

Rℓ+1 extends (Rℓ)
β⃗i ,⃗kℓ . For the construction of the sequences, assuming that

ℓ < ℓ∗ and Rℓ, Sℓ are given, let Rℓ+1 ∈ Pα+1, Sℓ+1 ∈ P \ (α + 1) be such that

(Rℓ)
β⃗i ,⃗kℓ ∪Sℓ ≤ Rℓ+1 ∪Sℓ+1 ∈ D. Finally, let s′ =

⋃
ℓ<ℓ∗+1 Sℓ, and let r′ be the

condition such that:

� dom(r′) =
⋃

ℓ<ℓ∗+1 dom(Rℓ) = dom(Rℓ∗).

� for every β in β⃗i, r
′(β) = ri(β) (and, if β /∈ dom(ri), just take r′(β) = 0).

� for every other value of β ∈ dom(Rℓ∗), take r′(β) = Rℓ∗(β).

Note that r′ ≥ ri and s′ are as desired, since for every ℓ < ℓ∗,

(r′)β⃗i ,⃗kℓ ∪ s′ ≥ Rℓ+1 ∪ Sℓ+1 ∈ D.

This concludes the construction of the sequence ⟨sni : n < |α|+⟩, which concludes
the proof.

We are now ready to prove Lemma 3.1.

Proof of Lemma 3.1. Let D ⊆ Pκ be dense open. We argue that G′ ∩D ̸= ∅.
Let D∗ be as in Lemma 3.2. Since D∗ is dense, we may pick a condition

q ∈ G ∩D∗. Let C be a club which is both disjoint from dom(q) and witnesses
that q ∈ D∗.

Let C∗ be the club of limit points of C. Since C∗ ∈ U , there exists n0 < ω
such that for every n ≥ n0, κn ∈ C∗. In particular, κn ∈ C and thus κn /∈
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dom(q) for all n ≥ n0. Let α = min(C \ κn0−1 + 1). Since κn0 is a limit point

of C, α < κn0
. Denote β⃗ = ⟨κ0, . . . , κn0−1⟩ ∈ [α]<ω. By the definition of D∗,

the set e(α, β⃗, q) is dense open in Pα+1. Thus, there exists r ∈ G ↾ (α+ 1) such

that, for every k⃗ ∈ {0, 1}n0 ,

rβ⃗,⃗k ∪ (q \ (α+ 1)) ∈ D.

By increasing r in G ↾ (α+ 1) we can assume that {κ0, . . . , κn−1} ⊆ dom(r).

Let k⃗ be a sequence of 1’s. Recall that ⟨κi : i < ω⟩ was chosen such that

G(κi) = 0 for every i < ω. In particular, the condition rβ⃗,⃗k ∪ (q \ (α+ 1))
is obtained from r ∪ (q \ (α+ 1)) ∈ G by switching the bits at coordinates
⟨κ0, . . . , κn0−1⟩ from 0 to 1. Since α < κn0

, the Prikry points κn for n ≥ n0 are
outside the support of r ∪ (q \ (α+ 1)). Overall, it follows from the definition
of G′ that

rβ⃗,⃗k ∪ (q \ (α+ 1)) ∈ G′.

Therefore G′ ∩D ̸= ∅, as desired.

Denote V1 = V [G′]. Let W1 be the normal measure generated by U ∪ {α <
κ : G′(α) = 1} in V [G′] (see Lemma 2.3 for the proof that a normal measure is
generated this way in V [G′]).

We argue that ⟨κn : n < ω⟩ is generic for Prikry forcing with W1 over V [G′].
By the Mathias criterion, it suffices to prove that ⟨κn : n < ω⟩ is almost con-
tained in {α < κ : G′(α) = 1}. This is indeed true: recall that for every n < ω,
G(κn) = 0. By the definition of G′, it follows that for every n < ω, G′(κn) = 1,
namely ⟨κn : n < ω⟩ ⊆ {α < κ : G′(α) = 1}, as desired.

Finally, note that V0 ̸= V1, since otherwise ⟨κn : n < ω⟩ would have belonged
to V0 = V [G] (as it can be computed from G,G′). Furthermore,

V0[⟨κn : n < ω⟩] = V1[⟨κn : n < ω⟩].

Then W0 ∈ V0,W1 ∈ V1 and ⟨κn : n < ω⟩ are as required in Theorem 1.1.

We conclude this note with a remark regarding the proof technique. The
main advantage of using the nonstationary support product is that the measures
W0,W1 are generated from U and a single additional set in V0, V1 respectively
(see Lemma 2.3). This simplifies checking whether the sequence ⟨κn : n < ω⟩
is PW1-generic over V1 (which was one of the final steps in the proof of Theo-
rem 1.1). However, we are not sure that the nonstationary support is actually
required for this.

Question 3.3. Can the forcing P in the proof be replaced with an Easton support
product?

We conjecture that the answer is positive. Working with an Easton sup-
port would greatly simplify some aspects of the proof (for example, Lemma 3.2
would be replaced by a simpler argument), but would likely require more care
in defining the measures W0 and W1.
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