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Abstract

We show that a Prikry sequence can have several grounds, answering
a question of Goldberg and Ben-Neria. This is part of a broader range
of applications of products and iterations of forcings with nonstationary
support.

1 Introduction

For a normal measure U on a measurable cardinal x, denote by Py the standard
Prikry forcing with respect to U. Recall that whenever G C Py is generic over
a ground model V', G induces an associated generic Prikry sequence,

Uit e k™ : 34 €U (1, 4) € G}.

The Prikry sequence associated to a Py-generic set is an w-sequence that is
almost contained in every set in U.

Conversely, working in an arbitrary ZFC model V', an w-sequence (k;: i <
w) € V is a Prikry sequence over some inner model V' C V if k := sup;, &; is
a measurable cardinal in V', U € V' is a normal measure on x, and {x;: i < w}
is almost contained in every set in U. In this case, by the Mathias criterion (see
[1, Theorem 1.12]), (k;: ¢ < w) is the generic Prikry sequence associated with a
Py-generic filter over V.

Ben-Neria and Goldberg asked whether a single Prikry sequence can be
generic over two distinct grounds. In this note, we give a positive answer to this
question.

Theorem 1.1. Assume GCH and the existence of a measurable cardinal. Then
there exists a ZFC model V* and an increasing sequence (k;: i < w) € V*,
such that V* has two distinct inner models Vi and Vi satisfying the following
properties:

® K =Sup;.,, ki s measurable in both Vo and Vi.

e There exists a normal measure Wy € Vy such that (k;: i < w) is Py, -
generic over Vj.



o There exists a normal measure Wy € Vi such that (k;: i < w) is Py, -
generic over Vi.

o V¥ =Vy[(ki: i <w)] = WV1[{Ki: i < w)].

2 Preliminaries

We present our main forcing and a series of Lemmas before the proof of Theorem
1.1.

Definition 2.1. Denote I = {a < k: « is inaccessible}. We say that a set A C
1 is nowhere stationary if for every regqular cardinal o, AN« is a nonstationary
subset of a. Let k be a Mahlo cardinal. For every a < k, let

P, ={f: a— 2: f is a partial function, dom(f) C I N« is nowhere stationary}.

Throughout this note we let P = P,. An equivalent presentation of PP is
as a nonstationary support product forcing, P = H;VES 1 Qn, where, for each
a < Kk, Qq ={0g,,0,1} is an atomic forcing (in which ”0”,”1” are incompatible
elements). We refer to [2] for the definition of nonstationary support product
forcing (]2, Section 1]), the proof that P preserves cardinals ([2, Corollary 1.6]),
and the proof of the following Fusion Lemma ([2, Lemma 1.3]).

Lemma 2.2. (Fusion Lemma) Let p € P be a condition, and (d(a): a < k)
a sequence of dense open subsets of P. Then there exists p* >* p and a club
C C k such that, for every a € C,

{rePor1:rU(@*\a+1)eda)}
is a dense subset of Po41 above p* | (a4 1).

Lemma 2.3. Let k be a measurable cardinal, and fiz a normal measure U € V
on k. Let G C P be generic over V. In V|G|, k remains measurable. Further-
more, for each k < 2, the set

UU{a < k: Gla) =k}
generates a normal ultrafilter on k in V|G].

Proof. (Sketch; the complete argument can be found in [2, Lemma 2.3]) For
every k € {0,1},

Hy={q€ju(P): 3p € G(q<julp) U{(x k)})}

is ju(P)-generic over My ~ Ult(V,U). In fact, any jy(P)-generic set which
contains jy[G] has the form Hy, for some k € {0,1} . In particular, jy lifts in at
least! two ways to an ultrapower embedding via a normal measure; indeed, for

L Actually, if the forcing is being done over V = L[U], or modified by adding a gap below
% (for instance, by initially forcing a Cohen subset of w and then forcing with P) there are
exactly two normal measures on k in the generic extension.



every k € {0,1}, U lifts to the measure Uy, € V[G] which is the normal measure
derived from the lift of j; which maps G to Hy.

We argue that each U; is generated by U and {a < k: G(a) = k}. Let A be
a P;-name for a set in Ug. By the definition of Uy, there exists p € G such that

ju(p) U{{k, k)} |- & € ju(A). Thus,
{a<k:pU{(a,E)}FaecA}n{a<k:Gla)=k}C A

and the set {o < k: pU {(a, k)} IF & € A} belongs to U. O

3 Proof of the main theorem

Proof of Theorem 1.1. In V' let U be a normal measure on k. Let P be the
forcing from definition 2.1. Let G C PP be generic over V, and denote Vo = VI[G].
Let Wy € Vi = V[G] be the measure generated by U U {{ae < k: G(a) = 0}} as
in Lemma 2.3.

Force with Py, over V[G], and let (k,: n < w) be a generic Prikry sequence
for Wy over V[G]. By removing an initial segment from the sequence, we can
assume that for every n < w, G(k,,) = 0 (since {£,: n < w} is almost contained
in {a < k: G(a) =0} € Wp).

Our goal now is to find, in Vp[(k;: i < w)], a P-generic set G’ over V, which
induces an inner model V4 = V[G'] of V[(k;: i < w)].

Work in Vp[(k;: i < w)]. For every p € Py, let p’ be the function obtained
from p by switching the bit p(k,), for every n < w for which k,, € dom(p).
A key remark is that only finitely many bits in dom(p) are changed, because
(Kn:n < w) is almost contained in a club disjoint from dom(p). Therefore, for
every p eV, p' € V as well.

In Vp[(kn: n < w)] define

G ={p:peG}.
Lemma 3.1. G' C P, is generic over V.

We will need some notations and a technical argument that involves fusion
for the proof. Fix a < k, n < w and sequences 3 = (Boy -y Bn-1), k=
(koy ..., kn_1) such that By < ... < B,—1 < a and for each i < n, k; € {0,1}.
Let r € P, be some condition. Let 7% € P, be the condition obtained from r
by adding B, ..., Bn_1 to the support (if needed) and setting r?*(3;) = k; for
every i < n, and 72k (&) = r(¢) for every ¢ € dom(r) \ {Bo; - - -, Bn_1}.2

In our proof of Lemma 3.1, the main property that we will have to verify
is that for every dense open D C P, DN G’ # (. For that, we will use the
following technical lemma.

2We will actually be interested in the case where kisa sequence of 1’s, but we chose to
work in this more general context.



Lemma 3.2. Let D C P, be a dense open subset. Then D* is dense, where D*
is the set of conditions q € Py, for which there exists a club C' C k such that for
every a € C and B = (Bo,...,Bn-1) € [a]<¥,

e(, B,q) = {r € Payr: VE = (ko, ..., kn_1) € {0,1}", ¥PF U (¢\ (a + 1)) € D}

is a dense open subset of Po1q above q | (a+ 1).
Proof. For every a < k, let
d(a) = {p € P: for every f € [a]<“, the set
{r € Payr: VK € {0,1}125) (rﬁ”s U\ (a+1)) e D)}
is a dense open subset of P11 above p | (a +1)}.

First, let us explain why it suffices to prove that d(a) C P is dense open for
every a < k. Assume that this has been proved. Fix a condition p € P. We
argue that there exists ¢ > p in D*. Indeed, by the Fusion Lemma 2.2, there
exists ¢ > p and a club C' C & such that, for every a € C,

{r €Pqar1:rU(qg\ (a+1)) ed(a)}

is dense above ¢ | (a +1). Fix a € C and § € [a]<“. We argue that the set
e(a,ﬁ, q) is a dense open subset of P11 above ¢ | (a4 1). Since D is open,
e(a,ﬁ, q) is open, so we concentrate on density. Assume that r > ¢ [ (o + 1).
Since o € C, we can find ' > r such that v U (¢\ (o +1)) € d(«). By the
definition of d(«), we can find r” > ¢/ (which depends on ) such that for every
i € {0,113,

P U g\ (a+1)) € D.

It follows that '’ € e(a, 5, ¢q) and extends ¢ | (o + 1), as desired.

Thus, it remains to prove that for every o < k, d(a) is dense open. Fix
a < K. As before, it’s clear that d(«) is open, so we concentrate on density.
Fix p € P and an enumeration (f;: i < a) of [a]<¥. We construct an increasing
sequence of conditions (s;: i < ) C P\ (a+1) extending p | (e + 1), such that
for every i < a, the set

{r € Pay: VK € {0, 1}12(3) (r@'”g Us; € D)}

is a dense open subset of P11 above p [ (a4 1). Once the sequence (s;: i < «)
is constructed, take s* = |J;_,, s; (note that P\ (o + 1) is sufficiently closed to
ensure that s* € P\ (¢ +1)). Then ¢ = (p | (o + 1)) Us* is an extension of p
in d(«), as desired.

For the construction of § = (s;: i < «), assume that ¢ < « and § | i was
constructed. Our goal is to construct a condition s; with the above-mentioned
property. First, let sf = Uj<i s; (and, in the case where i = 0, let s§ =



p\ (@4 1)). Enumerate (r,,: n < |a|T) all the conditions in P, which extend
p | (a+1). We define an increasing sequence of conditions (s?: n < |a|T) C
P\ (a+ 1) extending s} such that, for every n < |a|T, there exists an extension
) >, in P | (a+ 1) such that for every k € {0, 1}(8):,

(r)BF U (s7) € D.

Once the sequence (s?: n < |a|T) has been constructed, let s; = Un<jal+ st

and note that s; € P\ (o + 1) is as desired. Thus, it remains to define the
sequence (s?: n < |a|T). Assume that (s!: m < n) has been constructed for
some n < |a|T. Let si" = s € P\ (e +1). We argue that there exists

m<n “1

" € Poq1 and 8 € P\ (a+ 1) such that v/ > r,, s > s, and for every
ki € {0,115,

(7")5"’12 us' e D.
Once we prove that such 7/, s exist, we take r/, =" and s = ¢'.

Thus, it remains to construct r, s’ as above. Fix an enumeration (kg: £ < £*)
of {0, 1}”‘(51‘) (here, £* = 2”“(51'), and recall that f3; is finite and ¢* is a natural
number). We construct a pair of finite sequences of conditions, R = (Ry: £ <
0 4+1) CPyyyand § = (Sp: £ < £ +1) C P\ (a + 1) such that Ry = 74,
So = s;™, the sequence S is increasing, and the sequence R satisfies that each
Ry4q extends (Rg)gi”g@. For the construction of the sequences, assuming that
¢ < 0* and Ry, Sy are given, let Ryyq1 € Poy1,S041 € P\ (o + 1) be such that

(Rg)ﬁi’ke USe < Rep1USeq1 € D. Finally, let s = (J, 4. Se, and let 7’ be the
condition such that:

e dom(r') = U, pvyq dom(Ry) = dom(Ry-).
o for every B in i, r'(8) = rs(B) (and, if 8 ¢ dom(r;), just take 7'(8) = 0).
e for every other value of 3 € dom(Ry+), take 7' (8) = Re ().

Note that 7" > r; and s’ are as desired, since for every £ < £*,
(T/)’Bi’k’Z Us' > Ryy1USe1 € D.

This concludes the construction of the sequence (s?: n < |a|*), which concludes
the proof. O

We are now ready to prove Lemma 3.1.

Proof of Lemma 3.1. Let D C P, be dense open. We argue that G' N D # 0.
Let D* be as in Lemma 3.2. Since D* is dense, we may pick a condition
q € GN D*. Let C be a club which is both disjoint from dom(gq) and witnesses
that ¢ € D*.
Let C* be the club of limit points of C. Since C* € U, there exists ng < w
such that for every n > ng, k, € C*. In particular, k, € C and thus s, ¢



dom(q) for all n > ng. Let @« = min(C' \ k,y,—1 + 1). Since Ky, is a limit point
of C, o < Kp,. Denote 8 = (kg,...,kny—1) € [@]<¥. By the definition of D*,
the set e(a, B, q) is dense open in P, 1. Thus, there exists r € G | (o + 1) such

that, for every k € {0,1},

rPE U (g\ (a+1)) € D.

By increasing r in G | (o + 1) we can assume that {ko,...,%n—1} C dom(r).

Let k be a sequence of 1’s. Recall that (k;: ¢ < w) was chosen such that
G(k;) = 0 for every i < w. In particular, the condition r** U (¢ \ (a + 1))
is obtained from r U (¢\ (e +1)) € G by switching the bits at coordinates
(KOy -y Kng—1) from 0 to 1. Since o < Ky, , the Prikry points &, for n > ng are
outside the support of 7 U (¢ \ (a+ 1)). Overall, it follows from the definition
of G’ that L

PRy (g\ (@ +1)) €.

Therefore G’ N D # (), as desired. O

Denote V4 = V[G']. Let Wi be the normal measure generated by U U {a <
k: G'(a) =1} in V[G'] (see Lemma 2.3 for the proof that a normal measure is
generated this way in V[G']).

We argue that (k,: n < w) is generic for Prikry forcing with Wy over V[G'].
By the Mathias criterion, it suffices to prove that (k,: n < w) is almost con-
tained in {& < k: G'(a) = 1}. This is indeed true: recall that for every n < w,
G(kn) = 0. By the definition of G’, it follows that for every n < w, G'(k,,) = 1,
namely (k,: n < w) C {a < k: G'(a) = 1}, as desired.

Finally, note that V; # V1, since otherwise (k,: n < w) would have belonged
to Vo = V[G] (as it can be computed from G,G’). Furthermore,

Vol(kn: n < w)] = Vi[{kn: n < w)].
Then Wy € Vo, Wy € V; and (k,,: n < w) are as required in Theorem 1.1. O

We conclude this note with a remark regarding the proof technique. The
main advantage of using the nonstationary support product is that the measures
Wy, W, are generated from U and a single additional set in Vj, V; respectively
(see Lemma 2.3). This simplifies checking whether the sequence (k,: n < w)
is Py, -generic over V7 (which was one of the final steps in the proof of Theo-
rem 1.1). However, we are not sure that the nonstationary support is actually
required for this.

Question 3.3. Can the forcing P in the proof be replaced with an Easton support
product?

We conjecture that the answer is positive. Working with an Easton sup-
port would greatly simplify some aspects of the proof (for example, Lemma 3.2
would be replaced by a simpler argument), but would likely require more care
in defining the measures Wy and Wj.
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